首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Clonal species normally have low seed production, low recruitment rates and long lifespans, and it is expected that the rates of long-distance dispersal (LDD) of seeds will be low as well. Banksia candolleana is a clonal shrub in Mediterranean-type, fire-prone sclerophyll shrublands of southwestern Australia, whose reproductive biology and population dynamics contrast with those of co-occurring nonclonal congeneric species, all of which are restricted to a mosaic of sand dunes set within a matrix of inhospitable swales. Using microsatellite markers, we genotyped 499 plants in all 15 populations of B. candolleana within a 12-km2 area, assessed population genetic differentiation, and quantified the effective rate of interpopulation seed dispersal through genetic assignment of individuals to populations. We measured life history, reproductive and demographic attributes, and compared these with two co-occurring Banksia species, a non-clonal resprouter and a nonsprouter. B. candolleana has much higher levels of population genetic differentiation, and one-third the rate of interpopulation seed migration, as the other two species (2.2% vs 5.5−6.8% of genotyped plants inferred to be immigrants), though distances reached by LDD are comparable (0.3−2.3 km). The low rate of interpopulation dispersal was supported by an analysis of the age structure of three populations that suggests a mean interdune migration rate of <800 m in 200 years, and 60% of suitable dunes remain uninhabited. Thus, B. candolleana has poor properties for promoting long-distance dispersal. It is unclear if these are idiosyncratic to this species or whether such properties are to be expected of clonal species in general where LDD is less critical for species survival.  相似文献   

2.

Background and Aims

Landscape genetics combines approaches from population genetics and landscape ecology, increasing the scope for conceptual advances in biology. Banksia hookeriana comprises clusters of individuals located on dune crests (geographical populations) physically separated by uninhabitable swales, with local extinctions common through frequent fire and/or severe drought.

Methods

A landscape genetics approach was used to explore landscape-scale genetic connectivity and structure among geographical populations of B. hookeriana on 18 physically separated dunes located within a heterogeneous landscape of 3 × 5 km. These geographical populations were separated by approx. 0·1 to >1 km of unsuitable intervening swale habitat. Using 11 highly variable microsatellite loci, we utilized a Bayesian approach to identify genetic discontinuities within and between these geographical populations. Population allocation tests were then used to detect inter-dune seed dispersal inferred from assignment of individuals to a source population other than that from which they were collected.

Key Results

For the modal number of genetically distinct clusters (n = 17 genetic populations), two coincided with the geographical (dune) populations, eight spanned two to four geographical populations, and the remaining seven were spread among various parts of the sampled dunes, so that most geographical populations were spatially defined mosaics of individuals (subpopulations) belonging to two or more genetic populations. We inferred 25 inter-dune immigrants among the 582 individuals assessed, with an average distance between sink and source dunes of 1·1 km, and a maximum of 3·3 km.

Conclusions

The results show that genetic structure in an apparently strongly spatially structured landscape is not solely dependent on landscape structure, and that many physically defined geographical populations were genetic mosaics. More strikingly, there were physically separated individuals and groups of individuals that were part of the same genetically defined populations. We attribute this mismatch between spatially and genetically defined population structure to the varying closeness of the dunes and the ability of seeds to disperse long distances.  相似文献   

3.
Dispersal during the early life history of the anadromous rainbow smelt, Osmerus mordax , was examined using assignment testing and mixture analysis of multilocus genotypes and otolith elemental composition. Six spawning areas and associated estuarine nurseries were sampled throughout southeastern Newfoundland. Samples of adults and juveniles isolated by > 25 km displayed moderate genetic differentiation ( F ST ~ 0.05), whereas nearby (< 25 km) spawning and nursery samples displayed low differentiation ( F ST < 0.01). Self-assignment and mixture analysis of adult spawning samples supported the hypothesis of independence of isolated spawning locations (> 80% self-assignment) with nearby runs self-assigning at rates between 50 % and 70%. Assignment and mixture analysis of juveniles using adult baselines indicated high local recruitment at several locations (70–90%). Nearby (< 25 km) estuaries at the head of St Mary's Bay showed mixtures of individuals (i.e. 20–40% assignment to adjacent spawning location). Laser ablation inductively coupled mass spectrometry transects across otoliths of spawning adults of unknown dispersal history were used to estimate dispersal among estuaries across the first year of life. Single-element trends and multivariate discriminant function analysis (Sr:Ca and Ba:Ca) classified the majority of samples as estuarine suggesting limited movement between estuaries (< 0.5%). The mixtures of juveniles evident in the genetic data at nearby sites and a lack of evidence of straying in the otolith data support a hypothesis of selective mortality of immigrants. If indeed selective mortality of immigrants reduces the survivorship of dispersers, estimates of dispersal in marine environments that neglect survival may significantly overestimate gene flow.  相似文献   

4.
There is currently a poor understanding of the nature and extent of long-distance seed dispersal, largely due to the inherent difficulty of detection. New statistical approaches and molecular markers offer the potential to accurately address this issue. A log-likelihood population allocation test (AFLPOP) was applied to a plant metapopulation to characterize interpopulation seed dispersal. Banksia hookeriana is a fire-killed shrub, restricted to sandy dune crests in fire-prone shrublands of the Eneabba sandplain, southwest Australia. Population genetic variation was assessed for 221 individuals sampled from 21 adjacent dune-crest populations of B. hookeriana using amplified fragment length polymorphism. Genetic diversity was high, with 175 of 183 (96%) amplified fragment length polymorphism markers polymorphic. Of the total genetic diversity, 8% was partitioned among populations by amova and FST. There was no relationship between genetic diversity within populations and population demographic parameters such as population size and sample size. A population allocation test on these data unambiguously assigned 177 of 221 (80.1%) individuals to a single population. Of these, 171 (77.4% of total) were assigned to the population from which they were sampled and 6 (2.7% of total) were assigned to a known population other than the one from which they were sampled. A further 9 (4.1% of total) were assigned to outside the sampled metapopulation area, and 35 individuals (15.8%) could not be assigned unambiguously to any particular population. These results suggest that both the extent [15 of 221 (6.8%) individuals originating from a population other than the one in which they occur] and distance (1.6 to > 2.5 km), of seed dispersal between dune-crest populations is greater than expected from previous studies. The extent of long-distance interpopulation seed dispersal observed provides a basis for explaining the survival of populations of the fire-killed B. hookeriana in a landscape experiencing frequent fire, where local extinctions and recolonizations may be a regular occurrence.  相似文献   

5.
Long distance dispersal (LDD) of propagules is an important determinant of population dynamics, community structuring and biodiversity distribution at landscape, and sometimes continental, scale. Although migratory animals are potential LDD vectors, migratory movement data have never been integrated in estimates of propagule dispersal distances and LDD probability. Here we integrated migratory movement data of two waterbird species (mallard and teal) over two continents (Europe and North America) and gut retention time of different propagules to build a simple mechanistic model of passive dispersal of aquatic plants and zooplankton. Distance and frequency of migratory movements differed both between waterbird species and continents, which in turn resulted in changes in the shapes of propagule dispersal curves. Dispersal distances and the frequency of LDD events (generated by migratory movements) were mainly determined by the disperser species and, to a lesser extent, by the continent. The gut retention time of propagules also exerted a significant effect, which was mediated by the propagule characteristics (e.g. seeds were dispersed farther than Artemia cysts). All estimated dispersal curves were skewed towards local‐scale dispersal and, although dispersal distances were lower than previous estimates based only on the vector flight speed, had fat tails produced by LDD events that ranged from 230 to 1209 km. Our results suggest that propagule dispersal curves are determined by the migratory strategy of the disperser species, the region (or flyway) through which the disperser population moves, and the propagule characteristics. Waterbirds in particular may frequently link wetlands separated by hundreds of kilometres, contributing to the maintenance of biodiversity and, given the large geographic scale of the dispersal events, to the readjustment of species distributions in the face of climate change.  相似文献   

6.
The importance of sexual reproduction for clonal plant species has long been underestimated, perhaps as a consequence of the difficulty in identifying individuals, preventing the study of their population dynamics. Such is the case for Empetrum hermaphroditum, an ericaceous species, which dominates the ground vegetation of subarctic ecosystems. Despite abundant seed production, seedlings are rarely observed. Therefore, prevalent seedling recruitment on a subarctic dune system provided an opportunity to study the population dynamics and spatial pattern of the colonization phase of this species. We established a 6-ha grid on the dune systems that extended from the shoreline to the fixed dunes and mapped and measured all E. hermaphroditum individuals in the grid. Moreover, we sampled 112 individuals just outside the grid to identify any allometric relationship between the size and age of the individuals, which allowed us to reconstruct population expansion. The overall size structure suggests that the population is still expanding. In the last 50 yr, E. hermaphroditum advanced more than 200 m in the dune system. Expansion started in the 1960s simultaneously at different distances from the shoreline. Colonization did not proceed gradually from the fixed dune toward the shoreline but instead individuals established earlier in the troughs between the dunes, with an increasingly clumped spatial pattern as the population filled in with time.  相似文献   

7.
Riparian habitats are particularly prone to invasion of non-indigenous plant species and several species have been shown to rapidly expand their range along river networks, possibly mediated by the occurrence of frequent long-distance seed dispersal events. However, there is still relatively little empirical evidence for long-distance seed dispersal along river networks and most studies to date are inconclusive with regards to the direction (upstream vs. downstream) of seed movement. Using assignment analyses based on dominant AFLP markers, we provide empirical evidence that downstream long-distance seed dispersal has facilitated range expansion of the exotic plant Sisymbrium austriacum along the Meuse River. Of 242 sampled individuals, 13 (5.4%) were allocated to a population other than the one from which it was sampled. Of these, nine (3.7%) individuals were assigned to a known population within the area, the furthest being more than 20 km away from the population from which it was sampled. All putative source populations were located upstream, thus providing strong evidence for downstream migration of propagules. These results support the general view that river systems may serve as efficient transport vectors of plant species and thus may play an important role in increasing the spatial spread and range expansion of exotic plant species.  相似文献   

8.
We use the assignment technique and a new approach, the 'novel allele technique', to detect sex-biased dispersal in great reed warblers Acrocephalus arundinaceus. The data set consisted of immigrants and philopatric birds in a semi-isolated population in Sweden scored at 21 microsatellite loci. Fourteen cohorts were represented of which the four earliest were used to define a reference population. Female immigrants had lower assignment probability than males (i.e. were less likely to have been sampled in the reference population), and carried the majority of 'novel alleles' (i.e. alleles observed in the population for the first time). The difference in number of novel alleles between sexes was caused by a strong over-representation of females among the few individuals that carried several novel alleles, and there was a tendency for a corresponding female bias among individuals with low assignment probabilities. Immigrant males had similar or lower reproductive success than females. These results lead us to conclude that important interregional gene flow in great reed warblers depends on relatively few dispersing females, and that the novel allele technique may be a useful complement to the assignment technique when evaluating dispersal patterns from temporally structured data.  相似文献   

9.
Marine biologists have gone through a paradigm shift, from the assumption that marine populations are largely ‘open’ owing to extensive larval dispersal to the realization that marine dispersal is ‘more restricted than previously thought’. Yet, population genetic studies often reveal low levels of genetic structure across large geographic areas. On the other side, more direct approaches such as mark‐recapture provide evidence of localized dispersal. To what extent can direct and indirect studies of marine dispersal be reconciled? One approach consists in applying genetic methods that have been validated with direct estimates of dispersal. Here, we use such an approach—genetic isolation by distance between individuals in continuous populations—to estimate the spatial scale of dispersal in five species of coral reef fish presenting low levels of genetic structure across the Caribbean. Individuals were sampled continuously along a 220‐km transect following the Mesoamerican Barrier Reef, population densities were estimated from surveys covering 17 200 m2 of reef, and samples were genotyped at a total of 58 microsatellite loci. A small but positive isolation‐by‐distance slope was observed in the five species, providing mean parent‐offspring dispersal estimates ranging between 7 and 42 km (CI 1–113 km) and suggesting that there might be a correlation between minimum/maximum pelagic larval duration and dispersal in coral reef fishes. Coalescent‐based simulations indicate that these results are robust to a variety of dispersal distributions and sampling designs. We conclude that low levels of genetic structure across large geographic areas are not necessarily indicative of extensive dispersal at ecological timescales.  相似文献   

10.
There are few statistical methods for estimating contemporary dispersal among plant populations. A maximum-likelihood procedure is introduced here that uses pre- and post-dispersal population samples of biparentally inherited genetic markers to jointly estimate contemporary seed and pollen immigration rates from a set of discrete external sources into a target population. Monte Carlo simulations indicate that accurate estimates and reliable confidence intervals can be obtained using this method for both pollen and seed migration rates at modest sample sizes (100 parents/population and 100 offspring) when population differentiation is moderate (F(ST) ≥ 0.1), or by increasing pre-dispersal samples (to about 500 parents/population) when genetic divergence is weak (F(ST) = 0.01). The method exhibited low sensitivity to the number of source populations and achieved good accuracy at affordable genetic resolution (10 loci with 10 equifrequent alleles each). Unsampled source populations introduced positive biases in migration rate estimates from sampled sources, although they were minor when the proportion of immigration from the latter was comparatively low. A practical application of the method to a metapopulation of the Australian resprouter shrub Banksia attenuata revealed comparable levels of directional seed and pollen migration among dune groups, and the estimate of seed dispersal was higher than a previous estimate based on conservative assignment tests. The method should be of interest to researchers and managers assessing broad-scale nonequilibrium seed and pollen gene flow dynamics in plants.  相似文献   

11.
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.  相似文献   

12.
In order to detect sex-biased dispersal in the red-billed quelea Quelea quelea in southern Africa, we used the assignment index technique to determine the probability that individuals originated from the population in which they were sampled. This is the first time that this multilocus genetic test has been used in a bird species and is informative despite evidence that the population under study exhibits little genetic structure. There was a pattern of male-biased dispersal, the first example in a passerine, and the first time that evidence of a sex-biased pattern of dispersal has been shown for queleas.  相似文献   

13.
Estimating dispersal—a key parameter for population ecology and management—is notoriously difficult. The use of pedigree assignments, aided by likelihood‐based software, has become popular to estimate dispersal rate and distance. However, the partial sampling of populations may produce false assignments. Further, it is unknown how the accuracy of assignment is affected by the genealogical relationships of individuals and is reflected by software‐derived assignment probabilities. Inspired by a project managing invasive American mink (Neovison vison), we estimated individual dispersal distances using inferred pairwise relationships of culled individuals. Additionally, we simulated scenarios to investigate the accuracy of pairwise inferences. Estimates of dispersal distance varied greatly when derived from different inferred pairwise relationships, with mother–offspring relationship being the shortest (average = 21 km) and the most accurate. Pairs assigned as maternal half‐siblings were inaccurate, with 64%–97% falsely assigned, implying that estimates for these relationships in the wild population were unreliable. The false assignment rate was unrelated to the software‐derived assignment probabilities at high dispersal rates. Assignments were more accurate when the inferred parents were older and immigrants and when dispersal rates between subpopulations were low (1% and 2%). Using 30 instead of 15 loci increased pairwise reliability, but half‐sibling assignments were still inaccurate (>59% falsely assigned). The most reliable approach when using inferred pairwise relationships in polygamous species would be not to use half‐sibling relationship types. Our simulation approach provides guidance for the application of pedigree inferences under partial sampling and is applicable to other systems where pedigree assignments are used for ecological inference.  相似文献   

14.
Long-distance dispersal (LDD) of plants is difficult to measure but disproportionately important for various ecological and evolutionary processes. Dispersal of seeds of gallery-forest trees in savanna provides an opportunity for the study of colonisation processes and species coexistence driven by LDD. Investigations were carried out on 91 isolated trees along four gallery forests sampled in the Biosphere Reserve of Pendjari, Benin. The abundance of adult trees within nearest gallery forest was combined with functional traits (species maximum height, seed weight, morphological adaptation for dispersal by wind, water, birds and mammals) to explain the floristic composition of forest seedlings and saplings under isolated trees and in savanna. Stepwise negative binomial regression was used to identify the most significant variables explaining abundance of seedlings and saplings beneath isolated trees and in savanna and then derive colonisation from seedlings and persistence from saplings. The maximum height of species and seed weight explained the highest proportion of variance in species colonisation. Morphological dispersal syndromes by wind and birds had poor explanatory importance. Species rare in gallery forest had higher potential to colonise new environments through LDD whilst abundant species had higher persistence abilities. Contrary to the predictions of the seedling-size effect, small-seeded species dominated the sapling stage. The findings revealed the strong dependence of LDD and subsequent colonisation and persistence processes on species traits specialised for a variety of dispersal vectors. They also suggest that LDD towards isolated trees established far away from gallery forest can be difficult.  相似文献   

15.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

16.
Seeds of seven dune species were collected from sand dunes of Lakes Erie and Huron and buried to various depths in a natural sand dune habitat along Lake Huron. The seed samples were then retrieved after varying lengths of time and examined for their germinability and dormancy. Results showed that buried seeds remained viable for at least 2.5 years and had the potential to form a persistent seed bank. Seed banks were larger and longer lasting at greater depths of burial than those at shallow burial depths. The results suggested that failure to verify the existence of effective seed banks in previous studies may be due to insufficient number of samples, shallow sample depth, local population variations, and fruiting events. Several species also possessed a temporary, aboveground seed reserve formed by retention of a small proportion of viable seeds on the previous year's inflorescences. In some species, seeds retained aboveground were dormant and thus capable of forming a persistent seed bank when they entered the soil.  相似文献   

17.
A comparison of structure and pattern of the soil seed bank was made between active and stabilized sand dunes in northeastern Inner Mongolia, China. The objective of this paper was to determine the significance of seed bank in vegetation restoration of sand dunes. The results showed that (1) average seed density decreased from stabilized sand dune to interdune lowland of stabilized sand dune, to interdune lowland of active sand dune, and to active sand dune; (2) horizontally, along the transect from interdune lowland to ecotone and to sand dune top, a ‘V’ shaped pattern was presented in the active dune system, and a reverse ‘V’ shaped pattern in the stabilized sand dune system; (3) vertically, the proportion (accounting for the total seeds) of seeds found in 0–20 mm soil profile decreased from stabilized sand dune to interdune lowland of stabilized sand dune, to interdune lowland of active sand dune, and to active sand dune. The same order was also found in 20–50 mm and 50–100 mm soil profiles; (4) the Sokal and Sneath similarity indices in the species-composition between soil seed bank and above-ground vegetation were ranked as: the stabilized sand dune (24%) > the interdune lowland of active sand dune (21%) > the interdune lowland of stabilized sand dune (18%) > the active sand dune (5%); and (5) vegetation restoration of active sand dunes depends on the dispersal of seeds from nearby plant communities on the interdune lowlands. Much effort must be made to preserve the lowlands, as lowlands are the most important seed reservoir in the active sand dune field.  相似文献   

18.
Abstract: Long-distance dispersal of seeds (LDD) surely affects most ecological and evolutionary processes related to plant species. Hence, numerous attempts to quantify LDD have been made and, especially for wind dispersal, several simulation models have been developed. However, the mechanisms promoting LDD by wind still remain ambiguous and the effects of different weather conditions on LDD, although recognized as important, have only rarely been investigated. Here we examine the influence of wind speed and updrafts on dispersal of dandelion ( Taraxacum officinale agg.), a typical wind-dispersed herb of open habitats. We used PAPPUS, a weather-sensitive mechanistic simulation model of wind dispersal, which considers frequency distribution of weather conditions during the period the simulation refers to. A simulation for the 4-month shedding period of dandelion shows that high wind speed does not promote LDD. In contrast, vertical turbulence, especially convective updrafts, are of overwhelming importance. Mainly caused by updrafts, in the simulations more than 0.05 % of dandelion seeds were dispersed beyond 100 m, a distance commonly used to define LDD. We conclude that long-distance dispersal of seeds of herbaceous species with falling velocities < 0.5 - 1.0 ms-1 is mainly caused by convective updrafts.  相似文献   

19.
1. River corridors are well-known for their role in plant dispersal. The buoyancy of seeds, the possibility of dispersal by vegetative fragments, and the frequency and efficiency of dispersal among different river catchments determine linear distribution patterns. Little is known about the relative importance of these factors to observed patterns of genetic variation.
2. One hundred and fifty-six Nuphar lutea individuals from forty-four sampling sites in the river catchments of the Cidlina River, the Mrlina River and the Labe River (Czech Republic) were studied using ten microsatellite markers. Interpretation of patterns in genetic variation allowed several conclusions about dispersal mechanisms.
3. Vegetative long-distance dispersal is probably very limited in this species. Only one multilocus genotype was found in more than one sampling site. The distance between the sites was about 75 km.
4. To explain the distribution of Bayesian based clusters of related multilocus genotypes, both along-river and inter-river long-distance dispersals have to be invoked.
5. A marginally significant tendency for higher genetic diversity in the lower part of the river Cidlina was detected. Continuous downstream dispersal of seeds by water currents could be a valid explanation.
6. Significant positive autocorrelation was found among individuals at within-river distances of up to 25 km. Repeated dispersal of seeds over distances in the range of tens of kilometers is common.  相似文献   

20.
The application of spatially explicit models of population dynamics to fisheries management and the design marine reserve network systems has been limited due to a lack of empirical estimates of larval dispersal. Here we compared assignment tests and parentage analysis for examining larval retention and connectivity under two different gene flow scenarios using panda clownfish ( Amphiprion polymnus ) in Papua New Guinea. A metapopulation of panda clownfish in Bootless Bay with little or no genetic differentiation among five spatially discrete locations separated by 2–6 km provided the high gene flow scenario. The low gene flow scenario compared the Bootless Bay metapopulation with a genetically distinct population ( F ST = 0.1) located at Schumann Island, New Britain, 1500 km to the northeast. We used assignment tests and parentage analysis based on microsatellite DNA data to identify natal origins of 177 juveniles in Bootless Bay and 73 juveniles at Schumann Island. At low rates of gene flow, assignment tests correctly classified juveniles to their source population. On the other hand, parentage analysis led to an overestimate of self-recruitment within the two populations due to the significant deviation from panmixia when both populations were pooled. At high gene flow (within Bootless Bay), assignment tests underestimated self-recruitment and connectivity among subpopulations, and grossly overestimated self-recruitment within the overall metapopulation. However, the assignment tests did identify immigrants from distant (genetically distinct) populations. Parentage analysis clearly provided the most accurate estimates of connectivity in situations of high gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号