首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial chaperone mortalin was implicated in Parkinson''s disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes.  相似文献   

2.
Mutations in the parkin gene are the most common cause of autosomal recessive Parkinson’s disease (PD). As an E3-ubiquitin ligase, Parkin is associated with mitochondrial dynamics and mitophagy. Mortalin, a molecular chaperone, is located primarily in mitochondria, where it functions to maintain mitochondrial homeostasis and antagonize oxidative stress injury. A reduced expression level of mortalin has been observed in the affected brain regions of PD patients. Mortalin also interacts with a variety of PD-related proteins and plays an indispensible role in helping native protein refolding and importing proteins into the mitochondrial matrix. Thus, the main aims of the present study were to investigate mitochondrial dysfunction induced by knockdown of mortalin and to test whether Parkin overexpression could rescue this effect. We found that lentivirus-mediated knockdown of mortalin in HeLa cells resulted in a collapse of mitochondrial membrane potential, an abnormal accumulation of reactive oxygen species and apparent alterations in mitochondrial morphology under H2O2-induced stress conditions. Remarkably, Parkin overexpression rescued these mitochondrial abnormalities. In HeLa cells expressing Parkin, co-immunoprecipitation of endogenous mortalin and wild-type Parkin was detected when they were treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In conclusion, we indicate that the relatively decreased mortalin expression level and its impaired interaction with Parkin could affect its roles in mitochondrial function.  相似文献   

3.
Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aβ-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aβ-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aβ-mediated mitochondrial fragmentation and dysfunction in AD.  相似文献   

4.
5.
Mortalin/GRP75, the mitochondrial heat shock protein 70, plays a role in cell protection from complement-dependent cytotoxicity (CDC). As shown here, interference with mortalin synthesis enhances sensitivity of K562 erythroleukemia cells to CDC, whereas overexpression of mortalin leads to their resistance to CDC. Quantification of the binding of the C5b-9 membrane attack complex to cells during complement activation shows an inverse correlation between C5b-9 deposition and the level of mortalin in the cell. Following transfection, mortalin-enhanced GFP (EGFP) is located primarily in mitochondria, whereas mortalinΔ51-EGFP lacking the mitochondrial targeting sequence is distributed throughout the cytoplasm. Overexpressed cytosolic mortalinΔ51-EGFP has a reduced protective capacity against CDC relative to mitochondrial mortalin-EGFP. Mortalin was previously shown by us to bind to components of the C5b-9 complex. Two functional domains of mortalin, the N-terminal ATPase domain and the C-terminal substrate-binding domain, were purified after expression in bacteria. Similar to intact mortalin, the ATPase domain, but not the substrate-binding domain, was found to bind to complement proteins C8 and C9 and to inhibit zinc-induced polymerization of C9. Binding of mortalin to complement C9 and C8 occurs through an ionic interaction that is nucleotide-sensitive. We suggest that to express its full protective effect from CDC, mortalin must first reach the mitochondria. In addition, mortalin can potentially target the C8 and C9 complement components through its ATPase domain and inhibit C5b-9 assembly and stability.  相似文献   

6.
Disorders caused by mitochondrial respiratory chain deficiency due to mutations in mitochondrial DNA have varied phenotypes but many involve neurological features often associated with cell loss within specific brain regions. These disorders, along with the increasing evidence of decline in mitochondrial function with ageing, have raised speculation that primary changes in mitochondria could have an important role in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence supporting a role for mitochondria in common neurodegenerative diseases comes from studies with the toxin MPP+ and familial PD, which has been shown to involve proteins such as DJ-1 and Pink1 (both of which are predicted to have a role in mitochondrial function and oxidative stress). Mutations within the mitochondrial genome have been shown to accumulate with age and in common neurodegenerative diseases. Mitochondrial DNA haplogroups have also been shown to be associated with certain neurodegenerative conditions. This review covers the primary mitochondrial diseases but also discuss the potential role of mitochondria and mitochondrial DNA mutations in mitochondrial and neurodegenerative diseases, in particular in PD and in AD.  相似文献   

7.
8.
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.  相似文献   

9.
杨辉  左伋  刘雯 《生命科学》2010,(10):1009-1012
帕金森病(Parkinson’s disese,PD)是一种常见的神经退行性疾病,但到目前为止发病机制尚不明确,环境和遗传等因素与其发病有密切关系。研究表明,蛋白质异常积聚(泛素/蛋白酶体途径)和线粒体氧化损伤(线粒体途径),可能是导致PD患者发病的关键分子机制。Parkin、PINK1和DJ-1等基因突变与常染色体隐性的家族性PD有关,这些相关基因编码的蛋白对于维持线粒体形态和功能起着重要的作用。本文将主要从Parkin、PINK1、DJ-1和线粒体功能障碍与帕金森病的关系进行综述。  相似文献   

10.
11.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson’s disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies.  相似文献   

12.
Mortalin is a stress chaperone belonging to the Hsp70 family of proteins. Frequently enriched in cancers, it is a multifunctional protein and regulates cell proliferation, apoptosis, mitochondrial functions, and the activity of tumor suppressor protein p53. In the present study, we investigated circulating mortalin and its autoantibody in normal, cirrhosis, and cancerous liver. We found that although mortalin is enriched in liver cancer cells and tumors, it is not detected in the serum of either the liver cirrhosis or cancer patients. In contrast, mortalin autoantibody was detected in patients’ sera and showed significant correlation with the occurrence of cirrhosis. It is suggested as a potential noninvasive marker for liver cirrhosis.  相似文献   

13.
The Hsp70 family protein mortalin is an essential chaperone that is frequently enriched in cancer cells and exists in various subcellular sites, including the mitochondrion, plasma membrane, endoplasmic reticulum, and cytosol. Although the molecular mechanisms underlying its multiple subcellular localizations are not yet clear, their functional significance has been revealed by several studies. In this study, we examined the nuclear fractions of human cells and found that the malignantly transformed cells have more mortalin than the normal cells. We then generated a mortalin mutant that lacked a mitochondrial targeting signal peptide. It was largely localized in the nucleus, and, hence, is called nuclear mortalin (mot-N). Functional characterization of mot-N revealed that it efficiently protects cancer cells against endogenous and exogenous oxidative stress. Furthermore, compared with the full-length mortalin overexpressing cancer cells, mot-N derivatives showed increased malignant properties, including higher proliferation rate, colony forming efficacy, motility, and tumor forming capacity both in in vitro and in vivo assays. We demonstrate that mot-N promotes carcinogenesis and cancer cell metastasis by inactivation of tumor suppressor protein p53 functions and by interaction and functional activation of telomerase and heterogeneous ribonucleoprotein K (hnRNP-K) proteins.  相似文献   

14.
Mitochondrial dysfunction in the nigrostriatal dopaminergic system is a critical hallmark of Parkinson's disease (PD). Mitochondrial toxins produce cellular and behavioural dysfunctions resembling those in patients with PD. Causative gene products for familial PD play important roles in mitochondrial function. Therefore, targeting proteins that regulate mitochondrial integrity could provide convincing strategies for PD therapeutics. We have recently identified a novel 13‐kDa protein (p13) that may be involved in mitochondrial oxidative phosphorylation. In the current study, we examine the mitochondrial function of p13 and its involvement in PD pathogenesis using mitochondrial toxin‐induced PD models. We show that p13 overexpression induces mitochondrial dysfunction and apoptosis. p13 knockdown attenuates toxin‐induced mitochondrial dysfunction and apoptosis in dopaminergic SH‐SY5Y cells via the regulation of complex I. Importantly, we generate p13‐deficient mice using the CRISPR/Cas9 system and observe that heterozygous p13 knockout prevents toxin‐induced motor deficits and the loss of dopaminergic neurons in the substantia nigra. Taken together, our results suggest that manipulating p13 expression may be a promising avenue for therapeutic intervention in PD.  相似文献   

15.
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.  相似文献   

16.
Proteome analysis of human substantia nigra in Parkinson's disease   总被引:11,自引:0,他引:11  
Protein expression has been compared in human substantia nigra specimens from Parkinson's disease (PD) patients and from controls, and 44 proteins expressed in this midbrain region were identified by peptide mass fingerprinting. Among them, nine showed changes in their abundance. L and M neurofilament chains are less abundant in PD specimens, whereas peroxiredoxin II, mitochondrial complex III, ATP synthase D chain, complexin I, profilin, L-type calcium channel delta-subunit, and fatty-acid binding protein are significantly more present in PD samples than in controls. Besides the consolidated view of oxidative stress involvement in PD pathogenesis, suggested by overexpression of mitochondrial and reactive oxygen species (ROS)-scavenging proteins, these results indicate a possible potentiation mechanism of afferent signals to substantia nigra following degeneration of dopaminergic neurons.  相似文献   

17.
Evidence suggests that chronic inflammation, mitochondrial dysfunction, and oxidative stress play significant and perhaps synergistic roles in Parkinson's disease (PD), where the primary pathology is significant loss of the dopaminergic neurons in the substantia nigra. The use of anti-inflammatory drugs for PD treatment has been proposed, and inhibition of cyclo-oxygenase-2 (COX-2) or activation of peroxisome proliferator-activated receptor gamma (PPAR-gamma) yields neuroprotection in MPTP-induced PD. Lipopolysaccharide (LPS) induces inflammation-driven dopaminergic neurodegeneration. We tested the hypothesis that celecoxib (Celebrex, COX-2 inhibitor) or pioglitazone (Actos, PPAR-gamma agonist) will reduce the LPS-induced inflammatory response, spare mitochondrial bioenergetics, and improve nigral dopaminergic neuronal survival. Rats were treated with vehicle, celecoxib, or pioglitazone and were intrastriatally injected with LPS. Inflammation, mitochondrial dysfunction, oxidative stress, decreased dopamine, and nigral dopaminergic neuronal loss were observed post-LPS. Celecoxib and pioglitazone provided neuroprotective properties by decreasing inflammation and restoring mitochondrial function. Pioglitazone also attenuated oxidative stress and partially restored striatal dopamine as well as demonstrated dopaminergic neuroprotection and reduced nigral microglial activation. In summary, intrastriatal LPS served as a model for inflammation-induced dopaminergic neurodegeneration, anti-inflammatory drugs provided protective properties, and pioglitazone or celecoxib may have therapeutic potential for the treatment of neuro-inflammation and PD.  相似文献   

18.
In order to identify the cellular factors involved in human melanogenesis, we carried out shRNA-mediated loss-of-function screening in conjunction with induction of melanogenesis by 1-oleoyl-2-acetyl-glycerol (OAG) in human melanoma cells using biochemical and visual assays. Gene targets of the shRNAs (that caused loss of OAG-induced melanogenesis) and their pathways, as determined by bioinformatics, revealed involvement of proteins that regulate cell stress response, mitochondrial functions, proliferation, and apoptosis. We demonstrate, for the first time, that the mitochondrial stress chaperone mortalin is crucial for melanogenesis. Upregulation of mortalin was closely associated with melanogenesis in in vitro cell-based assays and clinical samples of keloids with hyperpigmentation. Furthermore, its knockdown resulted in compromised melanogenesis. The data proposed mortalin as an important protein that may be targeted to manipulate pigmentation for cosmetic and related disease therapeutics.  相似文献   

19.
20.
Mitochondria are one of the most complex of subcellular organelles and play key roles in many cellular functions including energy production, fatty acid metabolism, pyrimidine biosynthesis, calcium homeostasis, and cell signaling. In recent years, we and other groups have attempted to identify the complete set of proteins that are localized to human mitochondria as a way to better understand its cellular functions and how it communicates with other cell compartment in complex signaling pathways such as oxidative stress and apoptosis. Indeed, there is an increasing interest in understanding the molecular details of oxidative stress and the mitochondrial role in this process, as well as assessing how mitochondrial proteins become damaged or posttranslationally modified as a consequence of a major change in a cell's redox status. In this review, we report on the current status of the human mitochondrial proteome with an emphasis towards understanding how mitochondrial proteins, especially the proteins that make up the respiratory chain or oxidative phosphorylation (OXPHOS) enzymes, are modified in various models of age-related diseases such as cancer and Parkinson's disease (PD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号