首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚乙二醇- 聚乳酸嵌段共聚物纳米粒的研究进展   总被引:1,自引:0,他引:1  
聚乙二醇-聚乳酸嵌段共聚物(PEG-PLA)及其端基衍生物纳米粒可以增强载药量、降低突释效应、提高药物在血液中的循环时间、提高生物利用度,并且其粒径更小,能以被动靶向的方式聚集于炎症或靶向部位。本文综述了PEG-PLA嵌段共聚物纳米粒的最新进展,包括PEG-PLA的合成、纳米粒的制备、释药特性及在药物制剂中的应用。  相似文献   

2.
To enter the realm of human gene therapy, a novel drug delivery system is required for efficient delivery of small molecules with high safety for clinical usage. We have developed a unique vector HVJ-E (hemagglutinating virus of Japan-envelope) that can rapidly transfer plasmid DNA, oligonucleotide, and protein into cells by cell-fusion. In this study, we associated HVJ-E with magnetic nanoparticles, which can potentially enhance its transfection efficiency in the presence of a magnetic force. Magnetic nanoparticles, such as maghemite, with an average size of 29 nm, can be regulated by a magnetic force and basically consist of oxidized Fe which is commonly used as a supplement for the treatment of anemia. A mixture of magnetite particles with protamine sulfate, which gives a cationic surface charge on the maghemite particles, significantly enhanced the transfection efficiency in an in vitro cell culture system based on HVJ-E technology, resulting in a reduction in the required titer of HVJ. Addition of magnetic nanoparticles would enhance the association of HVJ-E with the cell membrane with a magnetic force. However, maghemite particles surface-coated with heparin, but not protamine sulfate, enhanced the transfection efficiency in the analysis of direct injection into the mouse liver in an in vivo model. The size and surface chemistry of magnetic particles could be tailored accordingly to meet specific demands of physical and biological characteristics. Overall, magnetic nanoparticles with different surface modifications can enhance HVJ-E-based gene transfer by modification of the size or charge, which could potentially help to overcome fundamental limitations to gene therapy in vivo.  相似文献   

3.
A self-assembled nanoparticulate system composed of a folate-conjugated heparin-poly(β-benzyl-l-aspartate) (HP) amphiphilic copolymer was proposed for targeted delivery of the antineoplastic drug paclitaxel (PTX). PTX was incorporated into three types of heparin-based nanoparticles, including HP, folate-conjugated HP (FHP), and folate-polyethylene glycol (PEG)-conjugated HP (FPHP), using a simple dialysis method. The PTX-loaded nanoparticles were then characterized according to particle size (140-190 nm) and size distribution, drug-loading content and efficiency, and in vitro release behavior. In the cellular uptake study using KB cells positive for the folate-receptor (FR), FHP and FPHP nanoparticles showed a much higher cellular uptake than did unconjugated HP nanoparticles. Specifically, when the PEG spacer was inserted between the folate ligand and heparin backbone, FPHP nanoparticles had a greater cellular uptake than did FHP nanoparticles. The in vitro cytotoxicity of PTX-loaded HP, FHP, and FPHP nanoparticles was studied in KB cells and FR-negative A549 cells. Compared with the cytotoxicity in A549 cells, PTX-loaded FHP and FPHP nanoparticles exhibited more potent cytotoxicity in KB cells than did PTX-loaded HP nanoparticles and free-PTX, suggesting that the presence of folate enhanced intracellular uptake via FR-mediated endocytosis. In addition, FPHP nanoparticles exhibited much greater cytotoxicity in KB cells than did FHP nanoparticles. These results suggest that PTX-loaded folate-conjugated HP nanoparticles are a potentially useful delivery system for cancer cells positive for the folate-receptor.  相似文献   

4.
Cai XJ  Xu YY 《Cytotechnology》2011,63(4):319-323
In past years with the advances of chemistry and material sciences, the development of nanotechnology brought generations of nanomaterials with specific biomedical properties. These include the nanoparticle-based drug delivery, nanosized drugs, and nanomaterials for tissue engineering. The present article focuses on the use of nanomaterials in controlled drug release. The applications of nanomaterials with nano-enabled drug release characteristics brought many benefits when compared to the traditional (bulk) materials. We discuss the current advances and propose some future directions for the technology development.  相似文献   

5.
Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release.  相似文献   

6.
Nanoparticles have been widely used as drug carriers, and finding new materials for them is important for efficient drug delivery. Herein, we developed a new nanoparticle using emulsan and flax seed oil. Emulsan is one of the representative biosurfactants obtained from Acinetobacter calcoaceticus RAG-1. The resulting nanoparticles have an emulsan shell and a hydrophobic oil core, into which pheophorbide a (Pba) was loaded as a model drug. The nanoparticles were about 165.7?nm and were stably dispersed in an aqueous condition for more than one week. They demonstrated fast uptake in SCC7 mouse squamous cell carcinoma cells and killed the tumor cells after laser irradiation due to the photodynamic effect of Pba. After injection into SCC7 tumor-bearing mice via the tail vein, the particles showed longer blood circulation and 3.04-fold higher tumor accumulation in tissue than free Pba. These results demonstrate that emulsan-based nanoparticles have promising potential in drug delivery.  相似文献   

7.

Background

Organic electrochemical transistors (OECTs), which are becoming more and more promising devices for applications in bioelectronics and nanomedicine, are proposed here as ideally suitable for sensing and real time monitoring of liposome-based structures. This is quite relevant since, currently, the techniques used to investigate liposomal structures, their stability in different environments as well as drug loading and delivery mechanisms, operate basically off-line and/or with pre-prepared sampling.

Methods

OECTs, based on the PEDOT:PSS conductive polymer, have been employed as sensors of liposome-based nanoparticles in electrolyte solutions to assess sensitivity and monitoring capabilities based on ion-to-electron amplified transduction.

Results

We demonstrate that OECTs are very efficient, reliable and sensitive devices for detecting liposome-based nanoparticles on a wide dynamic range down to 10− 5 mg/ml (with a lowest detection limit, assessed in real-time monitoring, of 10− 7 mg/ml), thus matching the needs of typical drug loading/drug delivery conditions. They are hence particularly well suited for real-time monitoring of liposomes in solution. Furthermore, OECTs are shown to sense and discriminate successive injection of different liposomes, so that they could be good candidates in quality-control assays or in the pharmaceutical industry.

General significance

Drug loading and delivery by liposome-based structures is a fast growing and very promising field that will strongly benefit from real-time, highly sensitive and low cost monitoring of their dynamics in different pharma and biomedical environments, with a particular reference to the pharmaceutical and production processes, where a major issue is monitoring and measuring the formation and concentration of liposomes and the relative drug load. The demonstrated ability to sense and monitor complex bio-structures, such as liposomes, paves the way for very promising developments in biosensing and nanomedicine. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

8.
Current fragment sets tend to be dominated by flatter molecules, and their shape diversity does not reflect that of the fragments that are theoretically possible. The design and synthesis of a set of bridged fragments containing a bridgehead nitrogen is described. Many of these fragments contain twisted lactams whose modulated electronic properties may present unusual opportunities for interaction with target proteins. The demonstrated novelty, three-dimensionality and molecular properties of the set of 22 fragments may provide valuable, and highly distinctive, starting points for fragment-based drug discovery.  相似文献   

9.
In order to better understand and predict the release of proteins from bioerodible microspheres or nanospheres, it is important to know the influences of different initial factors on the release mechanisms, though often it is difficult to assess what exactly is at the origin of a certain dissolution profile. We propose here a new class of fine-grained multi-agent models built to incorporate increasing complexity, permitting the exploration of the role of different parameters, especially that of the internal morphology of the spheres, in the exhibited release profile. This approach, based on Monte Carlo (MC) and cellular automata (CA) techniques, has permitted the testing of various assumptions and hypotheses about several experimental systems of nanospheres encapsulating proteins. Results have confirmed that this modelling approach has increased the resolution over the complexity involved, opening promising perspectives for future developments, especially complementing in vitro experimentation.
Martin CraneEmail:
  相似文献   

10.
Synthesis of metallic nanoparticles using plant extracts   总被引:1,自引:0,他引:1  
Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Synthesis mediated by plant extracts is environmentally benign. The reducing agents involved include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) and gold (Au) nanoparticles have been the particular focus of plant-based syntheses. Extracts of a diverse range of plant species have been successfully used in making nanoparticles. In addition to plant extracts, live plants can be used for the synthesis. Here we review the methods of making nanoparticles using plant extracts. Methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.  相似文献   

11.
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.  相似文献   

12.
We have previously shown that methotrexate (MTX) conjugated to a cancer-specific poly amido amine (PAMAM) dendrimer has a higher therapeutic index than MTX alone. Unfortunately, these therapeutics have been difficult to advance because of the complicated syntheses and an incomplete understanding of the dendrimer properties. We wished to address these obstacles by using copper-free click chemistry to functionalize the dendrimer scaffolds and to exploring the effects of two dendrimer properties (the targeting ligand and drug linkage) on cytotoxicity. We conjugated either ester or amide-linker modified MTX to dendrimer scaffolds with or without folic acid (FA). Because of multivalency, the FA and MTX functionalized dendrimers had similar capacities to target the folate receptor on cancer cells. Additionally, we found that the ester- and amide-linker modified MTX compounds had similar cytotoxicity but the dendrimer–ester MTX conjugates were much more cytotoxic than the dendrimer–amide MTX conjugates. These results clarify the impact of these properties on therapeutic efficacy and will allow us to design more effective polymer therapeutics.  相似文献   

13.
Different strategies used for treatment of cancer which has some major side effects. In this paper we hypothesized targeted delivery lipid based nanoparticles containing saturated solution of NaCl for elimination of cancerous cells.  相似文献   

14.
Biomimetic silica formation has attracted increasing interest over the last decade for numerous biotechnological applications due to the favorable mild reaction conditions. Inspired from silica biogenesis in diatoms, peptide variants derived from native silaffins have been used for silica formation in vitro. Here a generally applicable route for covalently linking a cargo molecule to the R5 silaffin peptide via a disulfide linkage is established. The peptide CG12AB, a peptide ligand of the epidermal growth factor receptor, was chosen as model. The ability of such silaffin-cargo conjugates to encapsulate the cargo molecule during silaffin-mediated silica precipitation is demonstrated. Cargo release from silica material under different conditions was analyzed. The results obtained here provide a rational basis for developing engineered R5 silaffin peptides into efficient tools for silica precipitation as well as for entrapment and release of cargo molecules under physiological conditions.  相似文献   

15.
pH-responsive nanoparticles (NPs) are currently under intense development as drug delivery systems for cancer therapy. Among various pH-responsiveness, NPs that are designed to target slightly acidic extracellular pH environment (pHe) of solid tumors provide a new paradigm of tumor targeted drug delivery. Compared to conventional specific surface targeting approaches, the pHe-targeting strategy is considered to be more general due to the common occurrence of acidic microenvironment in solid tumors. This review mainly focuses on the design and applications of pHe-activated NPs, with special emphasis on pHe-activated surface charge reversal NPs, for drug and siRNA delivery to tumors. The novel development of NPs described here offers great potential for achieving better therapeutic effects in cancer treatment.  相似文献   

16.
The modified ISCOMs, so-called Posintro™ nanoparticles, provide an opportunity for altering the surface charge of the particles, which influences their affinity for the negatively charged antigen sites, cell membranes and lipids in the skin. Hypothetically, this increases the passage of the ISCOMs (or their components) and their load through the stratum corneum. The subsequent increase in the uptake by the antigen-presenting cells results in enhanced transcutaneous immunization. To understand the nature of penetration of Posintro™ nanoparticles into the intercorneocyte space of the stratum corneum, the interaction between the nanoparticles and lipid model systems in form of liposomes and/or supported lipid bilayer was studied. As a lipid model we used Stratum Corneum Lipid (SCL), a mixture similar in composition to the lipids of the intercorneocyte space. By Förster Resonance Energy Transfer (FRET), Atomic Force Microscopy (AFM), Electrochemical Impedance Spectroscopy (EIS) and cryo-Transmission Electron Microscopy (cryo-TEM) it was shown that application of nanoparticles to the SCL bilayers results in lipid disturbance. Investigation of this interaction by means of Isothermal Titration Calorimetry (ITC) confirmed existence of an enthalpically unfavorable reaction. All these methods demonstrated that the strength of electrostatic repulsion between the negatively charged SCL and the nanoparticles affected their interaction, as decreasing the negative charge of the Posintro™ nanoparticles leads to enhanced disruption of lipid organization.  相似文献   

17.
Design of a Tumor Homing Cell-Penetrating Peptide for Drug Delivery   总被引:1,自引:0,他引:1  
The major drawbacks with conventional cancer chemotherapy are the lack of satisfactory specificity towards tumor cells and poor antitumor activity. In order to improve these characteristics, chemotherapeutic drugs can be conjugated to targeting moieties e.g. to peptides with the ability to recognize cancer cells. We have previously reported that combining a tumor homing peptide with a cell-penetrating peptide yields a chimeric peptide with tumor cell specificity that can carry cargo molecules inside the cells. In the present study, we have used a linear breast tumor homing peptide, CREKA, in conjunction with a cell-penetrating peptide, pVEC. This new chimeric peptide, CREKA–pVEC, is more convenient to synthesize and moreover it is better in translocating cargo molecules inside cancer cells as compared to previously published PEGA–pVEC peptide. This study demonstrates that CREKA–pVEC is a suitable vehicle for targeted intracellular delivery of a DNA alkylating agent, chlorambucil, as the chlorambucil–peptide conjugate was substantially better at killing cancer cells in vitro than the anticancer drug alone.  相似文献   

18.
Multidrug resistance-associated protein 4 (MRP4/ABCC4) makes a vital contribution to the bodily distribution of drugs and endogenous compounds because of its cellular efflux abilities. However, little is known about the mechanism regulating its cell surface expression. MRP4 has a PDZ-binding motif, which is a potential sequence that modulates the membrane expression of MRP4 via interaction with PDZ adaptor proteins. To investigate this possible relationship, we performed GST pull-down assays and subsequent analysis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. This method identified sorting nexin 27 (SNX27) as the interacting PDZ adaptor protein with a PDZ-binding motif of MRP4. Its interaction was confirmed by a coimmunoprecipitation study using HEK293 cells. Knockdown of SNX27 by siRNA in HEK293 cells raised MRP4 expression on the plasma membrane, increased the extrusion of 6-[(14)C]mercaptopurine, an MRP4 substrate, and conferred resistance against 6-[(14)C]mercaptopurine. Cell surface biotinylation studies indicated that the inhibition of MRP4 internalization was responsible for these results. Immunocytochemistry and cell surface biotinylation studies using COS-1 cells showed that SNX27 localized to both the early endosome and the plasma membrane. These data suggest that SNX27 interacts with MRP4 near the plasma membrane and promotes endocytosis of MRP4 and thereby negatively regulates its cell surface expression and transport function.  相似文献   

19.
20.
The present paper deals with the modification of the sterculia gum with methacrylic acid (MAAc) to hydrogels for use in drug delivery. The hydrogels were characterized by SEMs, FTIR and swelling studies. The release dynamics of model anti-ulcer drug (ranitidine hydrochloride) from the hydrogels has been studied for the evaluation of the release mechanism. The values of the diffusion exponent 'n' (0.55, 0.54 and 0.59) and gel characteristic constant 'k' (2.109 x 10(-2), 3.698 x 10(-2) and 2.427 x 10(-2)) have been obtained, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of the drug from the hydrogels occurred through non-Fickian diffusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号