共查询到20条相似文献,搜索用时 15 毫秒
1.
K Yokoyama D X Hou H Gao X Tang I Kitabayashi K Nishikura G Gachelin 《Cell structure and function》1992,17(6):433-442
Plasmid-borne DNAs, corresponding to 68-base oligodeoxynucleotides, synthesized in the antisense or sense configuration and based on the nucleotide sequences of various regions of the mouse alpha-globin mRNA, were introduced with the gene for xanthine-guanine phosphoribosyl transferase from E. coli (Ecogpt) into mouse erythroleukemia (MEL) cells by protoplast fusion. Specific inhibition of the synthesis of alpha-globin was observed only in the cells transformed with the plasmids with antisense 68-mers that corresponded to the cap site as well as the site of initiation of translation of alpha-globin mRNA (Oligo-A); Other plasmids with antisense 68-mers that corresponded to the regions of the exon/intron junctions, the individual exons, or the 3' untranslated region were ineffective. This antisense RNA efficiently reduced the production of alpha-globin to 9-18% of the endogenous level after induction with hexylmethylene-bis-acetoamide (HMBA). Moreover, most of the antisense transformants did not show any decrease in the expression of the c-myc gene at the early phases of differentiation of MEL cells. Thus, we propose a hypothesis that the early decline in levels of c-myc mRNA may be independent of and uncoupled from the program of globin synthesis during the differentiation of MEL cells. 相似文献
2.
Rabanal M Franch A Noé V Ciudad CJ Castell M Castellote C 《Antisense & nucleic acid drug development》2002,12(6):399-410
To decrease CD4 expression on T helper (Th) lymphocyte surface, antisense oligonucleotides (AS-ODNs), delivered by the cationic liposome DOTAP, were assayed in vitro on rat spleen lymphocytes. Four 21-mer ODNs (AS-CD4-1, AS-CD4-2, AS-CD4-3, and AS-CD4-4) directed against the translation start region of the cd4 gene were designed. AS-CD4-1 was phosphorothioate (PS)-modified in each base, and the other three were PS-modified at both ends and in the internal pyrimidine residues. Four ODN controls (fully PS-modified ODN-A and partially modified ODN-B, ODN-C, and ODN-D) were also assayed. CD4 resynthesis was stimulated by treatment with phorbol 12-myristate 13-acetate (PMA) at the same time as the incubations with the ODN. After 24 hours of treatment, CD4 expression was measured by immunofluorescence staining and flow cytometry. CD4 reexpression in rat PMA-treated lymphocytes was counteracted by 40% by means of AS-CD4-2 and AS-CD4-4 treatments. On the other hand, AS-CD4-3 produced only 20% inhibition, similar to that produced by ODN-B, and AS-CD4-1 did not have any significant effect compared with control ODNs. Both AS-CD4-2 and AS-CD4-4 decreased CD4 mRNA, as determined by RT-PCR, and in addition, they did not affect the expression of other surface lymphocyte molecules. Inhibition of surface CD4 expression remained at least 72 hours. The addition of both AS-ODNs did not further increase the effect obtained separately by each AS-ODN. Treatment of rat PMA-lymphocytes with two concentrations of AS-CD4-2 and AS-CD4-4 added 24 hours apart did not further decrease CD4 expression. In summary, AS-CD4-2 and AS-CD4-4 could constitute a good strategy to inhibit CD4 expression on Th lymphocytes and modulate their function. 相似文献
3.
Inhibition of microRNA with antisense oligonucleotides 总被引:3,自引:0,他引:3
Esau CC 《Methods (San Diego, Calif.)》2008,44(1):55-60
Antisense inhibition of microRNA (miRNA) function has been an important tool for uncovering miRNA biology. Chemical modification of anti-miRNA oligonucleotides (AMOs) is necessary to improve affinity for target miRNA, stabilize the AMO to nuclease degradation, and to promote tissue uptake for in vivo delivery. Here I summarize the work done to evaluate the effectiveness of various chemically modified AMOs for use in cultured cells and rodent models, and outline important issues to consider when inhibiting miRNAs with antisense oligonucleotides. 相似文献
4.
5.
Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. 总被引:7,自引:0,他引:7 下载免费PDF全文
The granule/perforin exocytosis model of CTL mediated cytolysis proposes that CTL, upon recognition of the specific targets, release the cytolytic, pore-forming protein perforin into the intercellular space which then mediates the cytotoxic effect. However, direct evidence for the involvement of perforin is still lacking, and indeed, recent results even seem incompatible with the model. To determine directly the role of perforin in CTL cytotoxicity, perforin antisense oligonucleotides were exogenously added during the stimulation of mouse spleen derived T cells and human peripheral blood lymphocytes (PBL), respectively. Perforin protein expression in lymphocytes was reduced by up to 65%, and cytotoxicity of stimulated T cells by as much as 69% (5.7-fold). These results provide the first experimental evidence for a crucial role of perforin in lymphocyte mediated cytotoxicity. 相似文献
6.
Fisher M Abramov M Van Aerschot A Xu D Juliano RL Herdewijn P 《Nucleic acids research》2007,35(4):1064-1074
Altritol-modified nucleic acids (ANAs) support RNA-like A-form structures when included in oligonucleotide duplexes. Thus altritol residues seem suitable as candidates for the chemical modification of siRNAs. Here we report that ANA-modified siRNAs targeting the MDR1 gene can exhibit improved efficacy as compared to unmodified controls. This was particularly true of ANA modifications at or near the 3′ end of the sense or antisense strands, while modification at the 5′ end of the antisense strand resulted in complete loss of activity. Multiple ANA modifications within the sense strand were also well tolerated. Duplexes with ANA modifications at appropriate positions in both strands were generally more effective than duplexes with one modified and one unmodified strand. Initial evidence suggests that the loss of activity associated with ANA modification of the 5′-antisense strand may be due to reduced phosphorylation at this site by cellular kinases. Treatment of drug resistant cells with MDR1-targeted siRNAs resulted in reduction of P-glycoprotein (Pgp) expression, parallel reduction in MDR1 message levels, increased accumulation of the Pgp substrate rhodamine 123, and reduced resistance to anti-tumor drugs. Interestingly, the duration of action of some of the ANA-modified siRNAs was substantially greater than that of unmodified controls. These observations suggest that altritol modifications may be helpful in developing siRNAs with enhanced pharmacological effectiveness. 相似文献
7.
We have designed a new class of oligonucleotides, "dumbbell RNA/DNA chimeric phosphodiesters", containing two alkyl loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA) in the double helical stem. The reaction of nicked (NDRDON) and circular (CDRDON) dumbbell RNA/DNA chimeric oligonucleotides with RNaseH gave the corresponding antisense phosphodiester oligonucleotide together with the sense RNA cleavage products. The liberated antisense phosphodiester oligodeoxynucleotide was bound to the target 35mer RNA, which gave 35mer RNA cleavage products by treatment with RNaseH. The circular dumbbell RNA/DNA chimeric oligonucleotide showed more nuclease resistance than the linear antisense phosphodiester oligodeoxynucleotide(anti-ODN) and the nicked dumbbell RNA/DNA chimeric oligonucleotide. 相似文献
8.
Five different target regions along the length of the dengue virus type 2 genome were compared for inhibition of the virus following intracellular injection of the cognate antisense oligonucleotides and their analogs. Unmodified phosphodiester oligonucleotides as well as the corresponding phosphorothioate oligonucleotides were ineffective in bringing about a significant inhibition of the virus. Novel modified phosphorothioate oligonucleotides in which the C-5 atoms of uridines and cytidines were replaced by propynyl groups caused a significant inhibition of the virus. Antisense oligonucleotide directed against the target region near the translation initiation site of dengue virus RNA was the most effective, followed by antisense oligonucleotide directed against a target in the 3' untranslated region of the virus RNA. It is suggested that the inhibitory effect of these novel modified oligonucleotides is due to their increased affinity for the target sequences and that they probably function via an RNase H cleavage of the oligonucleotide:RNA heteroduplex. 相似文献
9.
Self-complementary chimeric oligonucleotides that consist of DNA and 2'-O-methyl RNA nucleotides arranged in a double-hairpin configuration can elicit a point mutation when targeted to a gene sequence. We have used a series of structurally diverse chimeric oligonucleotides to correct a mutant neomycin phosphotransferase gene in a human cell-free extract. Analysis of structure-activity relationships demonstrates that the DNA strand of the chimeric oligonucleotide acts as a template for high-fidelity gene correction when one of its bases is mismatched to the targeted gene. By contrast, the chimeric strand of the oligonucleotide does not function as a template for gene repair. Instead, it appears to augment the frequency of gene correction by facilitating complex formation with the target. In the presence of RecA protein, each strand of a chimeric oligonucleotide can hybridize with double-stranded DNA to form a complement-stabilized D-loop. This reaction, which may take place by reciprocal four-strand exchange, is not observed with oligonucleotides that lack 2'-O-methyl RNA segments. Preliminary sequencing data suggest that complement-stabilized D-loops may be weakly mutagenic. If so, a low level of random mutagenesis in the vicinity of the chimera binding site may accompany gene repair. 相似文献
10.
11.
12.
Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. 总被引:11,自引:0,他引:11
A 21-mer oligodeoxynucleotide complementary to the polyadenylation signal for human hepatitis B virus (HBV) was complexed to a soluble DNA-carrier system that is targetable to hepatocytes via asialoglycoprotein receptors present on those cells. A cell line, HepG2 (2.2.15) that possesses asialoglycoprotein receptors and is permanently transfected with hepatitis B virus (ayw subtype) was exposed to complexed antisense DNA or controls. In the presence of complexed antisense DNA, the concentration of hepatitis B surface antigen in medium was 80% lower than controls after 24 h. Furthermore, during the next 6 days, there was no significant increase in surface antigen concentration in the presence of complexed antisense DNA. The inhibition could be effectively blocked by competition with an excess of free asialoglycoprotein. Total protein synthesis remained unchanged by exposure to complexed antisense sequences under identical conditions. In addition, HBV DNA in the medium and cell layers after 24-h exposure to complexed antisense sequences was 80% lower than in controls. The data indicate that antisense oligonucleotides complexed by a soluble DNA-carrier system can be targeted to cells via asialoglycoprotein receptors resulting in specific inhibition of hepatitis B viral gene expression and replication. 相似文献
13.
14.
Morpholino antisense oligonucleotides act by blocking translation of their target gene products and are effective tools for down-regulating gene expression. The current study was conducted to define treatment conditions for the use of morpholino oligonucleotides (MOs) in mammalian preimplantation embryos, and to employ MOs to target genes and study gene function in the early embryo. For the first time, ethoxylated polyethylenimine (EPEI), Lipofectin or Lysolecithin delivery agents were employed in combination with a fluorescent control MO and an alpha-catenin specific MO, to down-regulate gene expression during murine preimplantation development. Experiments applied to both two- and eight-cell stage murine preimplantation embryos contrasted the efficacy of MO concentrations of 1, 2, 5, 10, and 20 microM and treatment delivery times of 3, 6, 24, and 48 hr. Continuous treatment of two-cell embryos with Lipofectin and 20 microM alpha-catenin MO for 48 hr resulted in a significant (P < 0.05) reduction in development to the blastocyst stage and was accompanied by a marked reduction in alpha-catenin protein. These results indicate that morpholino antisense oligonucleotides are effective tools for down-regulating gene expression during mammalian preimplantation development. 相似文献
15.
Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. 总被引:11,自引:4,他引:11 下载免费PDF全文
T Vickers B F Baker P D Cook M Zounes R W Buckheit Jr J Germany D J Ecker 《Nucleic acids research》1991,19(12):3359-3368
All human immunodeficiency virus mRNAs contain a sequence known as TAR (trans-activating responsive sequence). The TAR element forms a stable RNA stem-loop structure which binds the HIV tat (trans-activator) protein and mediates increased viral gene expression. In principle, molecules which bind to the TAR RNA structure would inhibit trans-activation by perturbing the native RNA secondary structure. We have constructed a series of phosphodiester and phosphorothioate antisense oligonucleotides which specifically bind to the HIV TAR element. Specific binding to the TAR element was demonstrated in vitro with enzymatically synthesized TAR RNA. The TAR-directed phosphorothioates inhibited trans-activation in a sequence-dependent fashion in a cell culture model using an HIV LTR/human placental alkaline phosphatase gene fusion and tat protein supplied in trans. The molecules also inhibited HIV replication in both acute and chronically infected viral assays, but without sequence specificity. We have constructed a series of vectors consisting of the MMTV promoter and 5'-untranslated region of four different mRNAs, including the TAR region, to study the effect of TAR on gene expression in heterologous systems. The results suggest that, in the absence of the HIV LTR, the TAR element has a repressive effect on gene expression, which is relieved by tat. 相似文献
16.
Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. 总被引:18,自引:0,他引:18 下载免费PDF全文
A Bielinska J F Kukowska-Latallo J Johnson D A Tomalia J R Baker Jr 《Nucleic acids research》1996,24(11):2176-2182
Starburst polyamidoamine (PAMAM) dendrimers are a new type of synthetic polymer characterized by a branched spherical shape and a high density surface charge. We have investigated the ability of these dendrimers to function as an effective delivery system for antisense oligonucleotides and 'antisense expression plasmids' for the targeted modulation of gene expression. Dendrimers bind to various forms of nucleic acids on the basis of electrostatic interactions, and the ability of DNA-dendrimer complexes to transfer oligonucleotides and plasmid DNA to mediate antisense inhibition was assessed in an in vitro cell culture system. Cell lines that permanently express luciferase gene were developed using dendrimer mediated transfection. Transfections of antisense oligonucleotides or antisense cDNA plasmids into these cell lines using dendrimers resulted in a specific and dose dependent inhibition of luciferase expression. This inhibition caused approximately 25-50% reduction of baseline luciferase activity. Binding of the phosphodiester oligonucleotides to dendrimers also extended their intracellular survival. While dendrimers were not cytotoxic at the concentrations effective for DNA transfer, some non-specific suppression of luciferase expression was observed. Our results indicate that Starburst dendrimers can be effective carriers for the introduction of regulatory nucleic acids and facilitate the suppression of the specific gene expression. 相似文献
17.
O Dorseuil A Vazquez P Lang J Bertoglio G Gacon G Leca 《The Journal of biological chemistry》1992,267(29):20540-20542
Rac1 and Rac2 gene products are small GTP-binding proteins showing 92% homology to each other. According to recent studies performed in cell-free systems, Rac1 and Rac2 proteins may be involved in the activation of NADPH-oxidase, the superoxide-generating enzymatic complex active in phagocytes. Epstein-Barr virus (EBV) transformed B lymphocytes, which express rac1 and rac2 genes, also efficiently release superoxide anions when triggered by various cell surface stimuli. To investigate the regulatory role of Rac proteins in living cells, we analyzed superoxide production in response to cross-linking of surface immunoglobulins or phorbol ester treatment in human EBV-transformed B lymphocytes pretreated with Rac sense and antisense oligonucleotides. We report here that (i) the rac protein content estimated by immunoblotting can be decreased by 60% in Rac antisense pretreated cells and (ii) a strong (50-60%), dose-dependent inhibition of superoxide production is observed in antisense pretreated cells whereas cells pretreated with sense oligonucleotide are unaffected. The data presented show, for the first time in whole cells, that superoxide production is modulated by the Rac protein content, thus demonstrating the physiological role of Rac proteins in the regulation of NADPH-oxidase. 相似文献
18.
19.
20.
Prospects of chimeric RNA-DNA oligonucleotides in gene therapy 总被引:3,自引:0,他引:3
A strategy called targeted gene repair was developed to facilitate the process of gene therapy using a chimeric RNA-DNA oligonucleotide. Experiments demonstrated the feasibility of using the chimeric oligonucleotide to introduce point conversion in genes in vitro and in vivo. However, barriers exist in the low and/or inconstant frequency of gene repair. To overcome this difficulty, three main aspects should be considered. One is designing a more effective structure of the oligonucleotide. Trials have included lengthening the homologous region, displacing the mismatch on the chimeric strand and inventing a novel thioate-modified single-stranded DNA, which was demonstrated to be more active than the primary chimera in cell-free extracts. The second aspect is optimizing the delivery system. Producing synthetic carriers for efficient and specific transfection is demanding, especially for treatment in vivo where targeting is difficult. The third and most important aspect lies in the elucidation of the mechanism of the strategy. Investigation of the mechanism of strand exchange between the oligonucleotide molecule and double-stranded DNA in prokaryotes may greatly help to understand the mechanism of gene repair in eukaryotes. The development of this strategy holds great potential for the treatment of genetic defects and other purposes. 相似文献