首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2,2'-azodiisobutyronitrile-induced radical polymerization in solution of 4-nitrophenyl acrylate was performed under microwave heating at a frequency of 2.45 GHz. This approach allows the control of the molecular mass of poly(4-nitrophenyl acrylate) used in the synthesis of multivalent glycoconjugates. It was found that the polymerization of 4-nitrophenyl acrylate under microwave irradiation results in products with a narrower molecular mass distribution than at conventional heating.  相似文献   

2.
The hydrolysis of colominic acid under microwave irradiation was studied and compared with traditional heating methods. The microwave irradiation has several advantages over the heating method in the hydrolysis of colominic acid: (a) products with higher degrees of polymerization are obtained, (b) less lactone byproducts are observed, and (c) the hydrolytic rate is much faster. These advantages are probably due to the microwave effect. Oligosialic acids as the products of the acid hydrolysis of polysialic acid with conventional heating methods were fully lactonized, especially under the conditions of higher temperature and stronger acid.  相似文献   

3.
Xing R  Liu S  Yu H  Guo Z  Wang P  Li C  Li Z  Li P 《Carbohydrate research》2005,340(13):2150-2153
The effect of inorganic salts such as sodium chloride on the hydrolysis of chitosan in a microwave field was investigated. While it is known that microwave heating is a convenient way to obtain a wide range of products of different molecular weights only by changing the reaction time and/or the radiation power, the addition of some inorganic salts was shown to effectively accelerate the degradation of chitosan under microwave irradiation. The molecular weight of the degraded chitosan obtained by microwave irradiation was considerably lower than that obtained by traditional heating. Moreover, the molecular weight of degraded chitosan obtained by microwave irradiation assisted under the conditions of added salt was considerably lower than that obtained by microwave irradiation without added salt. Furthermore, the effect of ionic strength of the added salts was not linked with the change of molecular weight. FTIR spectral analyses demonstrated that a significantly shorter time was required to obtain a satisfactory molecular weight by the microwave irradiation-assisted inorganic salt method than by microwave irradiation without inorganic salts and conventional technology.  相似文献   

4.
Environmentally friendly microwave heating process was applied to the dissolution of cellulose in N-methylmorpholine-N-oxide (NMMO) with 105–490 W and 2450 MHz microwave energy until the dissolution completed. Microwave heating caused the decrease in the dissolution time and energy consumption. Cellulose/NMMO/water solutions with different cellulose concentrations were converted to the membrane to measure the crystallinity and degree of polymerization. It was shown that microwave heating with the power of 210 W is an alternative heating system for dissolution of cellulose in NMMO. The membranes obtained with two different heating methods showed the same crystallinity and degree of polymerization. As a result, microwave heating has an advantage in shortening reaction times, compared to conventional heating.  相似文献   

5.
This study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37-80°C demonstrated that trypsin activity declines sharply at temperatures above 60°C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37°C and 50°C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3-4 orders of magnitude too low to induce conformational changes in proteins or enzymes.  相似文献   

6.
本研究采用酸法、碱法、酶法和微波法对灵芝β-葡聚糖进行降解,通过降解率、产物分子量变化、产物聚合度分布等指标比较了不同方法的降解效果。结果表明,微波法降解率高达94%,处理后产物的分子量明显降低,寡糖产物聚合度分布广。酶法降解率约为40%,寡糖产物中含有DP2-5的成分。酸法及碱法降解率低于20%,寡糖产物少。研究表明,与其他3种方法相比,微波法降解率高、产物丰富、操作条件易于控制,是一种简单、高效的降解灵芝β-葡聚糖、制备灵芝β-葡寡糖的方法。  相似文献   

7.
We have compared the effect of microwave irradiation and of conventional heating on the fluorescence of solution-based green fluorescent protein. A specialized near-field 8.5 GHz microwave applicator operating at 250 mW input microwave power was used. The solution temperature, the intensity, and the spectrum of the green fluorescent protein fluorescence 1), under microwave irradiation and 2), under conventional heating, were measured. In both cases the fluorescence intensity decreases and the spectrum becomes red-shifted. Although the microwave irradiation heats the solution, the microwave-induced changes in fluorescence cannot be explained by heating alone. Several possible scenarios are discussed.  相似文献   

8.
A rapid and mild extraction protocol for the preparation of lignin was achieved by microwave-assisted heating in formic acid at 101 °C under atmospheric pressure. In this case, birch lignin was extracted with microwave heating process (ML) in formic acid and characterized by elemental analysis, FTIR, GPC, 1H NMR and 13C–1H HSQC. In addition, the antioxidant activity of the samples was investigated. For comparative study, milled wood lignin (MWL) and lignin extracted with oil bath heating process (OL) were prepared. The results showed that the lignin yield under microwave heating was much higher than that under oil bath heating. A maximal delignification degree (89.77%) was achieved when microwave heating time was 30 min. When double time (60 min) was used under oil bath heating, the delignification degree was 66.11%. The structural characterization showed that the lignin structure of ML did not change dramatically, which is a mixture of GS-type with β-O-4′ ether bond as the major inter-unit linkage. As for antioxidant activity against DPPH, the radical scavenging index (RSI) of ML was 1.20, which was higher than that of MWL (0.53), suggesting that ML exhibited much higher antioxidant activity than MWL.  相似文献   

9.
The approach of employing N-glycinylmaleamic acid (NGMA) as an efficient cosurfactant to provide microemulsion polymerization of butyl acrylate using a weight ratio of sodium dodecyl sulfate (SDS)/butyl acrylate (BA) at 相似文献   

10.
The extension of microwave use in the biochemical industry was explored by drying tribenuron, a thermosensitive biochemical, in a microwave oven and in a thermal vacuum oven. Tribenuron wet cakes, containing a mixture of solvents, methanol and water, were heated at 40 °C in both ovens. Nitrogen purge was used to prevent the decomposition of tribenuron from prolonged heating. Microwave heating dried tribenuron in twenty minutes while the vacuum oven heating required eighteen hours to dry the wet cakes. In addition, the tribenuron quality was maintained under microwave drying, but deteriorated in the thermal vacuum oven. Therefore, microwave technology is more effective in drying tribenuron than conventional vacuum ovens. The results of this study are important for the use of microwave drying on a large scale in biochemical companies.  相似文献   

11.
A relatively simple reversed-phase high-performance liquid chromatographic method for the determination of the polar metabolites of nifedipine in biological fluids is described. After conversion of 2-hydroxymethyl-6-methyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylic acid 5-methyl ester (IV) into 5,7-dihydro-2-methyl-4-(2-nitrophenyl)-5-oxofuro[3,4-b]pyridine-3-carboxylic acid methyl ester (V) by heating under acidic conditions, V was extracted with n-pentane—dichloromethane (7:3) and analysed on a C18 column with ultraviolet detection. Subsequently, 2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid monomethyl ester (III) was extracted with chloroform and analysed on the same system. Limits of determination in blood were 0.1 μg/ml for III and 0.05 μg/ml for IV and V; these limits were two to ten times higher for urine. This inter-assay variability was always less than 7.5%.  相似文献   

12.
Xing R  Liu S  Yu H  Zhang Q  Li Z  Li P 《Carbohydrate research》2004,339(15):2515-2519
In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a high degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and 13C NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32 mg/mL, respectively. It is a potential antioxidant in vitro.  相似文献   

13.
Starch graft poly(methyl acrylate) (S-g-PMA) was prepared by ceric ion initiation of methyl acrylate in an aqueous corn starch slurry (prime starch) which maximized the accessibility of the starch for graft polymerization. A new ceric ion reaction sequence was established as starch-initiator-methyl acrylate followed by addition of a small amount of ceric ion solution when the graft polymerization was almost complete to quench the reaction. As a result of this improved procedure, no unreacted methyl acrylate monomer remained, and thus, essentially no ungrafted poly(methyl acrylate) homopolymer was formed in the final grafted product. Quantities of the high purity S-g-PMA so prepared in pilot scale were converted to resin pellets and loose-fill foam by single screw and twin screw extrusion. The use of prime starch significantly improved the physical properties of the final loose-fill foam, in comparison to foam produced from regular dry corn starch. The S-g-PMA loose-fill foam had compressive strength and resiliency comparable to expanded polystyrene but higher bulk density. The S-g-PMA loose-fill foam also had better moisture and water resistance than other competitive starch-based materials. Studies indicated that the starch portion in S-g-PMA loose-fill foam biodegraded rapidly, whereas poly(methyl acrylate) remained relatively stable under natural environmental conditions.  相似文献   

14.
目的,针对基托树脂固化的特性,探讨微波加热对树脂收缩量的影响。方法:采用四种常用基托树脂,分别采取单纯微波固化和微波加压固化聚合后,测定开盒后一周内树脂的聚合收缩情况。结果:两种固化方法收缩量均较小,适应性强。微波加压固化虽收缩量相对稍大但收缩均匀各树脂间无显著差异。结论:微波加热固化清洁高效,基托树脂结构致密,收缩量小,是今后树脂固化的一个发展方向。  相似文献   

15.
The aim of this work was to prepare organogels of Carbopol 974P NF (C974) in PEG 400 by using a novel technique, high-speed homogenization followed by microwave heating. Triclosan (TCS) was used as a model drug. C974, at concentrations ranging between 2% and 4%, was dispersed in 25 ml of PEG 400, and the dispersion was homogenised for 5 min at 24,000 rpm. The dispersion was either heated at 80°C in water bath under mechanic stirring at 200 rpm or exposed to micro-irradiation (1,200 W/1 h) for 2 min. The formulations prepared with both methods performed a well-structured gel matrix characteristic at 3% and 4% of C974 concentrations. As the concentrations of the polymer increased, the elastic properties also increased. The viscosity profiles indicated a shear-thinning system. DSC data revealed that TCS was dissolved in gel. Skin accumulation ability of TCS had been improved by these novel organogels regardless of the preparation method. TCS was still microbiologically effective after the microwave process was applied. It was determined that microwave heating is a suitable method to obtain C974 organogels. This novel production technique developed might be promising especially in industrial scale when the dramatic reduction in the preparation time and energy were considered.  相似文献   

16.
Effect of microwave radiation on Bacillus subtilis spores   总被引:4,自引:0,他引:4  
AIMS: To compare the killing efficacy and the effects exerted by microwaves and conventional heating on structural and molecular components of Bacillus subtilis spores. METHODS AND RESULTS: A microwave waveguide applicator was developed to generate a uniform and measurable distribution of the microwave electric-field amplitude. The applicator enabled the killing efficacy exerted by microwaves on B. subtilis spores to be evaluated in comparison with conventional heating at the same temperature value. The two treatments produced a similar kinetics of spore survival, while remarkably different effects on spore structures were seen. The cortex layer of the spores subjected to conductive heating was 10 times wider than that of the untreated spores; in contrast, the cortex of irradiated spores did not change. In addition, the heated spores were found to release appreciable amounts of dipicolinic acid (DPA) upon treatment, while extracellular DPA was completely undetectable in supernatants of the irradiated spores. These observations suggest that microwave radiation may promote the formation of stable complexes between DPA and other spore components (i.e. calcium ions); thus, making any release of DPA from irradiated spores undetectable. Indeed, while a decrease in measurable DPA concentrations was not produced by microwave radiation on pure DPA solutions, a significant lowering in DPA concentration was detected when this molecule was exposed to microwaves in the presence of either calcium ions or spore suspensions. CONCLUSIONS: Microwaves are as effective as conductive heating in killing B. subtilis spores, but the microwave E-field induces changes in the structural and/or molecular components of spores that differ from those attributable only to heat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the effect of microwaves on B. subtilis spore components.  相似文献   

17.
A series of fluorinated diblock and triblock copolymers of poly(epsilon-caprolactone) and poly(heptadecafluorodecylacrylate) were prepared by combining ring-opening polymerization of epsilon-CL and atom transfer radical polymerization of the acrylate. These copolymers with well-controlled molecular weight and composition were characterized by (1)H NMR spectroscopy and used as stabilizers for the dispersion ring-opening polymerization of epsilon-CL in supercritical carbon dioxide. The effect of composition and architecture of the polymeric stabilizers on the stabilization of PCL microspheres was investigated. Finally, purification of PCL was successfully implemented by reactive supercritical fluid extraction of the tin catalyst.  相似文献   

18.
Hyaluronan (hyaluronic acid, HA) was depolymerised by ultrasonication (US), microwave irradiation (MW) and conventional heating (CH), and the effect of pH and oxidants was investigated. The degradation was followed by viscometry and size exclusion chromatography coupled with low-angle light scattering. The results demonstrated that depolymerisation of HA by US leveled off to a limiting molecular mass, and the degradation was significantly enhanced by acidic and alkaline pH only in the presence of oxidants. In contrast to US, the course of depolymerisation by MW was strongly pH-dependent, and the degradation rate increased with decreasing pH. The expected enhancement of depolymerisation by MW in comparison to CH was marked only at very short heating time at pH <4. The NMR and FTIR spectral analyses indicated that HA in the whole Mw-range studied retained almost the backbone of the parent polysaccharide independently on the degradation method used. At harsh degradation conditions (long-term treatments, particularly at acidic pH or alkaline pH and in presence of oxidants) the depolymerisation was accompanied by destruction of both constituent sugar residues and formation of unsaturated structures detectable by UV-absorption at 230–240 and 260–270 nm. US-assisted oxidative degradation under mild reaction conditions was shown to be the most appropriate procedure to reduce the molecular mass of HA to 100 kDa without significant chemical modification of the polysaccharide.  相似文献   

19.
Self-degradable antimicrobial copolymers bearing cationic side chains and main-chain ester linkages were synthesized using the simultaneous chain- and step-growth radical polymerization of t-butyl acrylate and 3-butenyl 2-chloropropionate, followed by the transformation of t-butyl groups into primary ammonium salts. We prepared a series of copolymers with different structural features in terms of molecular weight, monomer composition, amine functionality, and side chain structures to examine the effect of polymer properties on their antimicrobial and hemolytic activities. The acrylate copolymers containing primary amine side chains displayed moderate antimicrobial activity against E. coli but were relatively hemolytic. The acrylate copolymer with quaternary ammonium groups and the acrylamide copolymers showed low or no antimicrobial and hemolytic activities. An acrylate copolymer with primary amine side chains degraded to lower molecular weight oligomers with lower antimicrobial activity in aqueous solution. This degradation was due to amidation of the ester groups of the polymer chains by the nucleophilic addition of primary amine groups in the side chains resulting in cleavage of the polymer main chain. The degradation mechanism was studied in detail by model reactions between amine compounds and precursor copolymers.  相似文献   

20.
Summary Microwave effects on free amino acid concentrations in milkversus a water bath heating were investigated in view of their importance for infant growth. Concentrations of few amino acids, such as aspartate, serine or lysine, are unchanged whatever the way and the temperature of heating. In contrast, tryptophan concentrations decreased similarly whatever the way of heating (110 ± 3µmol/l before heatingvs 84 ± 4µmol/l after 30°C microwave heating, p < 0.05). On the contrary, concentrations of glutamate and glycine increased more after water bath heating at 90°C (325 ± 4 and 101 ± 1µmol/l, respectively) than after microwave heating (312 ± 4 and 95 ± 1µmol/l, respectively, p < 0.05) suggesting milk proteolysis. Moreover, the accumulation of ammonia observed at 90°C with the water bath together with increase Glu levels might reflect a degradation of glutamine. An ornithine enrichment, more evident with microwave heating, was shown and could be of interest as it is a polyamine precursor. Also, considering few variations of free amino acid concentrations and the time saved, microwave heating appears to be an appropriate method to heat milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号