首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous report, evidence was presented that the deoxyribonucleic acid (DNA) of adenovirus type 12 (Ad12) is integrated by covalent linkage into the DNA of baby hamster kidney cells (BHK-21 cells). These studies have been extended. The DNA of Ad12 and that of BHK-21 cells grown in medium containing 5-bromodeoxyuridine could be separated by equilibrium centrifugation in alkaline CsCl density gradients. BHK-21 cells were infected with (3)H-labeled Ad12, and the total intracellular DNA was analyzed at various times after infection in alkaline CsCl density gradients. The (3)H label in the position of cellular DNA hybridized predominantly with viral DNA and to a lesser extent also with cellular DNA. Replication of viral DNA could not be detected in BHK-21 cells. The appearance of viral (3)H label in the density stratum of cellular DNA was not significantly affected when DNA synthesis in Ad12-infected BHK-21 cells was inhibited >96% by cytosine arabinoside. These findings provided additional evidence for integration of Ad12 DNA into the DNA of BHK-21 cells. It could be calculated that 5 to 55 Ad12 DNA equivalents per cell are integrated. Replication of viral or cellular DNA was not required for integration. Inhibition of protein or ribonucleic acid synthesis interfered with integration only slightly.  相似文献   

2.
3.
Host and viral deoxyribonucleic acid (DNA) metabolism in LPP-1-infected Plectonema boryanum was studied by equilibrium centrifugation in CsCl gradients. Approximately 50% of the host DNA is degraded to acid-soluble material between 3 and 7 hr after infection. Most of the acid-soluble product is reincorporated into viral DNA. Incorporation of exogenous (3)H-adenine into viral DNA can be detected very early after infection (within the first 2 hr), but the bulk of viral DNA synthesis occurs between 6 and 8 hr. Both the breakdown of host DNA and the synthesis of viral DNA require protein synthesis during the first few hours of infection.  相似文献   

4.
5.
Intracellular Uncoating of Type 5 Adenovirus Deoxyribonucleic Acid   总被引:60,自引:44,他引:16       下载免费PDF全文
Highly purified, (32)P-labeled type 5 adenovirus was employed to study "uncoating" of viral deoxyribonucleic acid (DNA)-defined as the development of sensitivity to deoxyribonuclease. Viral infectivity and radioactivity adsorbed to KB cells at the same rate, and significant amounts of (32)P did not elute from cells throughout the eclipse period. Kinetic studies of viral penetration, eclipse of infectivity, and uncoating of viral DNA indicated that the three events were closely related temporally, that the rates of each were similar, and that they were completed within 60 to 90 min after infection. Viral penetration, eclipse, and uncoating proceeded normally under conditions which blocked protein synthesis, but they did not occur at 0 to 4 C. Neither viral DNA nor viral protein was degraded to acid-soluble material during the eclipse period. The nature of adenovirus DNA was studied after it was converted intracellularly from deoxyribonuclease-resistant to deoxyribonuclease-susceptible. Intact virions centrifuged in sucrose gradients had a sedimentation coefficient of approximately 800, and viral DNA sedimented as a particle of about 30S. Infection of KB cells with purified (32)P-labeled virus yielded deoxyribonuclease-susceptible viral nucleic acid which was in particles with sedimentation coefficients of 350 to 450S, i.e., greater than 10 times faster than DNA obtained from purified virions which had been disrupted by exposure to pH 10.5. When the DNA from disrupted virions was mixed with cell lysates, its sedimentation characteristics were essentially unchanged by the presence of cellular material.  相似文献   

6.
Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of (3)H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. (3)H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much (3)H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase.  相似文献   

7.
Labeled virions of Rous sarcoma virus (RSV) were disrupted with detergent and analyzed on equilibrium sucrose density gradients. A core fraction at a density of approximately 1.24 g/cc contained all of the (3)H-uridine label and about 30% of the (3)H-leucine label from the virions. Endogenous viral deoxyribonucleic acid (DNA) polymerase activity was only found in the same location. Additional ribonucleic acid (RNA)- and DNA-dependent DNA polymerase activities were found at the top of the gradients. RNA-dependent and DNA-dependent DNA polymerase activities were also found in RSV-converted chicken cells. Particles containing these activities were released from cells by detergent and were shown to contain viral RNA. These particles were analyzed on equilibrium sucrose density gradients and were found to have densities different from virion cores.  相似文献   

8.
Newly replicated adenovirus 2 deoxyribonucleic acid (DNA) can be isolated from the nucleus of HeLa cells by a gentle lysis procedure as a fairly homogeneous complex with a sedimentation of 73S. The viral DNA complex can be prepared completely free from host cell DNA. The viral complex is slightly active in ribonucleic acid (RNA) synthesis in vitro. Treatment of the complex with Pronase and sodium dodecyl sulfate converts the DNA to a form which sediments at 43S. Nuclei isolated from adeno-infected cells synthesize high-molecular-weight virus-specific RNA in vitro. Optimal RNA synthesis requires a divalent cation, preferentially manganese, and relatively high salt concentrations. The synthesis of virus-specific RNA by the isolated nuclei is strongly inhibited by low doses of alpha-amanitine. The latter experimental result is discussed in terms of the polymerase used to transcribe the adenovirus DNA in vivo.  相似文献   

9.
Size and Composition of Marek''s Disease Virus Deoxyribonucleic Acid   总被引:15,自引:12,他引:3       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from purified nucleocapsids of Marek's disease herpesvirus (MDV) was cosedimented with T4 and with herpes simplex virus (HSV) DNA in neutral sucrose density gradients and with T4 DNA in alkaline sucrose density gradients. These experiments indicated that the intact MDV DNA had a sedimentation constant of 56S corresponding to a molecular weight of 1.2 x 10(8) daltons. In the alkaline gradients, the largest and most prominent band contains a DNA sedimenting at 70S corresponding to 6.0 x 10(7) daltons in molecular weight. The DNA is therefore double-stranded and not cross-linked. Isopycnic sedimentation of the MDV DNA molecules with SPO1, Micrococcus lysodeikticus, and HSV DNA gave a density of 1.705 g/cm(3) corresponding to 46 guanine plus cytosine moles per cent. Lastly, in hybridization tests the DNA hybridized with RNA of infected cells but not with that of uninfected cells supporting the conclusion that it is viral.  相似文献   

10.
Purified fiber antigen of type 5 adenovirus inhibited the multiplication of type 5 adenovirus by 50% when 35 mug of fiber antigen protein was added to 10(6) KB cells in suspension culture. Although the fiber antigen reduced the number of virions adsorbed per cell when a multiplicity of infection of 50,000 plaque-forming units (PFU)/cell was employed, the number of cells infected was not diminished under these conditions. If a low multiplicity of infection (1.1 PFU/cell) was used, viral adsorption was not detectably decreased. The fiber antigen did not reduce the capability of virions to liberate their viral deoxyribonucleic acid (DNA). The biosyntheses of DNA, ribonucleic acid (RNA), and protein were blocked about 20 to 25 hr after the addition of fiber antigen to cultures of uninfected or type 5 adenovirus-infected KB cells. Most of the fiber antigen protein became cell-associated between 22 and 36 hr after it was added to cells. The hexon antigen neither inhibited viral multiplication nor blocked the biosynthesis of DNA, RNA, or protein. Moreover, the hexon did not attach to KB cells. The profound effects of the fiber antigen were not due to the induction of an interferon-like substance, for actinomycin D did not reduce the ability of the fiber to inhibit multiplication of type 1 poliovirus.  相似文献   

11.
The yield of infectious virus was determined for KB cells infected with both adenovirus types 2 (ad 2) and 12 (ad 12). It was found that the yield of the former was greatly reduced, whereas that of the latter was not affected significantly. The reduction in virus yield was accompanied by an inhibition of ad 2 virus-specific ribonucleic acid (RNA) and viral deoxyribonucleic acid (DNA) synthesis at various times after infection. On the other hand, the rate of synthesis of ad 12 virus-specific RNA and viral DNA was not inhibited, but advanced in time. The total amount of ad 12 viral DNA synthesized was not affected by coinfection with ad 2. These results suggest that ad 2 infection hastens the maturation of ad 12.  相似文献   

12.
13.
Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane.  相似文献   

14.
KB cells productively infected with human adenovirus type 2 contain an alkalistable class of viral DNA sedimenting in a broad zone between 50 and 90S as compared to 34S for virion DNA. This type of DNA is characterized as viral by DNA-DNA hybridization. It is extremely sensitive to shear fragmentation. Extensive control experiments demonstrate that the fast-sedimenting viral DNA is not due to artifactual drag of viral DNA mechanically trapped in cellular DNA or to association of viral DNA with protein or RNA. Furthermore, the fast-sedimenting DNA is found after infection with multiplicities between 1 and 1,000 PFU/cell and from 6 to 8 h postinfection until very late in infection (24 h). Analysis in dye-buoyant density gradients eliminates the possibility that the fast-sedimenting viral DNA represents supercoiled circular molecules. Upon equilibrium centrifugation in alkaline CsCl density gradients, the fast-sedimenting viral DNA bands in a density stratum intermediate between that of cellular and viral DNA. In contrast, the 34S virion DNA isolated and treated in the same manner as the fast-sedimenting DNA cobands with viral marker DNA. After ultrasonic treatment of the fast-sedimenting viral DNA, it shifts to the density positions of viral DNA and to a lesser extent to that of cellular DNA. The evidence presented here demonstrates that the 50 to 90S viral DNA represents adenovirus DNA covalently integrated into cell DNA.  相似文献   

15.
Deoxyribonucleic Acid Synthesis in FV-3-infected Mammalian Cells   总被引:12,自引:11,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) synthesis and virus growth in frog virus 3 (FV-3)-infected mammalian cells in suspension were examined. The kinetics of thymidine incorporation into DNA was followed by fractionating infected cells. The cell fractionation procedure separated replicating viral DNA from matured virus. Incorporation of isotope into the nuclear fraction was depressed 2 to 3 hr postinfection; this inhibition did not require protein synthesis. About 3 to 4 hr postinfection, there was an increase in thymidine incorporation into both nuclear and cytoplasmic fractions. The nuclear-associating DNA had a guanine plus cytosine (GC) content of 52%; unlike host DNA it was synthesized in the presence of mitomycin C, it could be removed from nuclei by centrifugation through sucrose, and it was susceptible to nuclease digestion. This nuclear-associating DNA appeared to be a precursor of cytoplasmic DNA of infected cells. The formation of the latter DNA class could be selectively inhibited by conditions (infection at 37 C or inhibition of protein synthesis) that permit continued incorporation of thymidine into nuclear-associating DNA. The cytoplasmic DNA class also had a GC content of 52%, was resistant to nuclease degradation, and its sedimentation profile in sucrose gradients corresponded to that of infective virus. Contrary to previous reports, we found that (i) viral DNA synthesis can continue in the absence of concomitant protein synthesis, and (ii) viral DNA synthesis is not abolished at 37 C. The temperature lesion in FV-3 replication appeared to be in the packaging of DNA into the form that appears in the cytoplasmic fraction of disrupted cells.  相似文献   

16.
Three Size-Classes of Intracellular Adenovirus Deoxyribonucleic Acid   总被引:18,自引:15,他引:3       下载免费PDF全文
When human adenovirus type 2 or 12 infects cells, either productively or non-productively, three classes of viral deoxyribonucleic acid (DNA) are found within the cells: (i) viral DNA which cosediments with DNA extracted from infectious adenovirions at 31.3S for adenovirus type 2 and at 29.0S for adenovirus type 12, (ii) viral DNA which sediments at about 18S, and (iii) viral DNA which sediments at >45S and is apparently integrated into the cellular DNA. A precursor-product relationship is suggested as a working hypothesis; the intact viral DNA is hydrolyzed to slowly sedimenting DNA and the slowly sedimenting DNA is integrated into the cellular DNA. Both the parental and the newly synthesized viral DNA are altered by this route. The intact viral DNA within the cells apparently is cleaved into the slowly sedimenting DNA by a preformed enzyme.  相似文献   

17.
18.
Inhibition of HeLa cell deoxyribonucleic acid (DNA) synthesis, which occurred by the 4th to 5th hr after infection with poliovirus, could be blocked completely by guanidine only when it was present before the 2nd hr. At the 2nd hr, there was no significant ribonucleic acid (RNA)-replicase activity, and addition of guanidine inhibited all production of virus but allowed 57% of maximal DNA inhibition to develop. Maximum DNA inhibition developed in cells infected for 4 hr in the presence of guanidine when the guanidine was removed for a 10-min interval. RNA-replicase activity was not enzymatically detectable and viral multiplication did not develop in these cells unless the interval without guanidine was extended to 60 min. The interpretation of the data was that the effect of guanidine on viral-induced inhibition of DNA synthesis was distinct and not a consequence of the inhibition of RNA-replicase.  相似文献   

19.
Intermediates in the Synthesis of Type 2 Adenovirus Deoxyribonucleic Acid   总被引:22,自引:16,他引:6  
Intermediates in the synthesis of adenovirus type 2 deoxyribonucleic acid (DNA) were studied in HeLa cells. Pieces of DNA smaller than the viral genome were demonstrated after labeling with (3)H-thymidine for 10 to 240 sec. Intermediates as small as the Okazaki fragments (8 to 10S) do not predominate at any of the above times. No detectable addition of nucleotides to parental genome could be shown, nor was there any breakdown of recently synthesized viral DNA. The DNA intermediates were of viral origin for they hybridized to viral DNA and were made at a stage of the cell cycle (G(2)) when host DNA is not synthesized.  相似文献   

20.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号