首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Wu G  He X 《Biochemistry》2006,45(16):5319-5323
Beta-catenin phosphorylation at serine 45 (Ser45), threonine 41 (Thr41), Ser37, and Ser33 is critical for beta-catenin degradation, and regulation of beta-catenin phosphorylation is a central part of the canonical Wnt signaling pathway. Beta-catenin mutations at Ser45, Thr41, Ser37, and Ser33 perturb beta-catenin degradation and are frequently found in cancers. It is established that Ser45 phosphorylation by casein kinase I (CKI) initiates phosphorylation at Thr41, Ser37, and Ser33 by glycogen synthase kinase 3 (GSK3) and that phosphorylated Ser37 and Ser33 are recognized by the F-box protein beta-TrCP, a component of a ubiquitin ligase complex that mediates beta-catenin degradation. While the roles of Ser45, Ser37, and Ser33 are well documented, the function of Thr41 remains less defined. Here we show that Thr41 strictly acts as a phosphorylation relay residue and that the Ser-X-X-X-Ser (X is any amino acid) motif is obligatory for beta-catenin phosphorylation by GSK3. Beta-catenin phosphorylation/degradation and its regulation by Wnt can occur normally in the absence of Thr41 as long as the Ser-X-X-X-Ser motif/spacing is preserved. These results suggest that Thr41 functions to bridge sequential phosphorylation from Ser45 to Ser37 and provide further insights into the discrete steps and logic in beta-catenin phosphorylation-degradation.  相似文献   

2.
Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.  相似文献   

3.
Beta-catenin is implicated in quite different cellular processes, which require a fine-tuned regulation of its function. Here we demonstrate that cyclin-dependent kinase 6 (CDK6), in association with cyclin D1 (CCND1), directly binds to beta-catenin. We showed that CCND1-CDK6 phosphorylates beta-catenin on serine 45 (S45). This phosphorylation creates a priming site for glycogen synthase kinase 3beta (GSK3beta) and is both necessary and sufficient to initiate the beta-catenin phosphorylation-degradation cascade. Moreover, co-immunoprecipitation assays using Wnt3a-conditioned medium reveals that while Wnt stimulation leads to the dissociation of beta-catenin from axin and casein kinase Ialpha (CKIalpha), Wnt treatment promotes an increase in CCND1 level and the association of beta-catenin with CCND1-CDK6. Furthermore, Wnt3a-stimulated cytosolic beta-catenin levels were higher in CDK6 knockout mouse embryonic fibroblasts (CDK6-/- MEFs) compared to wild-type MEFs. Thus, the CCND1-CDK6 complex is like to negatively regulate Wnt signaling by mediating beta-catenin phosphorylation and its subsequent degradation in Wnt-stimulated cells.  相似文献   

4.
Wnt/beta-catenin signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Recently, emerging evidence from researches of organ fibrosis suggest that sustained Wnt/beta-catenin pathway reactivation is linked to the pathogenesis of fibrotic disorders. Here we focus on Wnt/beta-catenin-related pathogenic effects in different organs, such as lung fibrosis, liver fibrosis, skin fibrosis and renal fibrosis. Additionally, Wnt/beta-catenin signaling works in a combinatorial manner with TGF-beta signaling in the process of fibrosis, and TGF-beta signaling can induce expression of Wnt/beta-catenin superfamily members and vice versa. Moreover, network analysis, based on pathway databases, revealed that key factors in the Wnt pathway were targeted by some differentially expressed microRNAs detected in fibrosis diseases. These findings demonstrated the crosstalks between Wnt/beta-catenin pathway and TGF-beta signalings, and microRNAs, highlighting the role of Wnts in organ fibrogenesis. Most importantly, nowadays there is a variety of Wnt pathway inhibitors which give us the potential therapeutic feasibility, modulation of the Wnt pathway may, therefore, present as a suitable and promising therapeutic strategy in the future.  相似文献   

5.
6.
Yang F  Zeng Q  Yu G  Li S  Wang CY 《Cellular signalling》2006,18(5):679-687
The Wnt/beta-catenin signaling pathway plays a critical role in cell proliferation and oncogenesis. It has been found to be chronically activated in a variety of human cancers, including head and neck squamous cell carcinoma (HNSCC). Previously, we have found that the activation of the Wnt/beta-catenin signaling pathway inhibits mitochondria-mediated apoptosis. In this study, we extended our studies to determine whether the Wnt/beta-catenin signaling pathway inhibited death receptor-mediated apoptosis in HNSCC cells. We found that Wnt/beta-catenin inhibited not only tumor necrosis factor (TNF)/c-Myc-mediated apoptosis, but also cell detachment-mediated apoptosis (anoikis) which is dependent on the death receptor signaling pathway. Interestingly, we also observed that the Wnt/beta-catenin signaling pathway induced HNSCC cell scattering and promoted cell invasion in the Matrigel, both of which are hallmarks for the invasive growth of HNSCC. Consistently, the over-expression of beta-catenin promoted HNSCC tumor growth in nude mice. Taken together, our results suggest that the Wnt/beta-catenin signaling pathway plays dual functions in HNSCC development: promoting both cell survival and invasive growth of HNSCC cells.  相似文献   

7.
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state.  相似文献   

8.
9.
Wang J  Li S  Chen Y  Ding X 《Developmental biology》2007,304(2):836-847
The vertebral column is derived from somites, which are transient segments of the paraxial mesoderm that are present in developing vertebrates. The strict spatial and temporal regulation of somitogenesis is of crucial developmental importance. Signals such as Wnt and FGF play roles in somitogenesis, but details regarding how Wnt signaling functions in this process remain unclear. In this study, we report that Wnt/beta-catenin signaling regulates the expression of Mespo, a basic-helix-loop-helix (bHLH) gene critical for segmental patterning in Xenopus somitogenesis. Transgenic analysis of the Mespo promoter identifies Mespo as a direct downstream target of Wnt/beta-catenin signaling pathway. We also demonstrate that activity of Wnt/beta-catenin signaling in somitogenesis can be enhanced by the PI3-K/AKT pathway. Our results illustrate that Wnt/beta-catenin signaling in conjunction with PI3-K/AKT pathway plays a key role in controlling development of the paraxial mesoderm.  相似文献   

10.
11.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

12.
Wnt control of stem cells and differentiation in the intestinal epithelium   总被引:14,自引:0,他引:14  
The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/beta-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/beta-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas.  相似文献   

13.
14.
15.
Increasingly complex: new players enter the Wnt signaling network   总被引:11,自引:0,他引:11  
Wnt proteins can activate different intracellular signaling cascades in various organisms by interacting with receptors of the Frizzled family. The first identified Wnt signaling pathway, the Wnt/beta-catenin pathway, has been studied in much detail and is highly conserved among species. As to non-canonical Wnt pathways, the current situation is more nebulous partly because the intracellular mediators of this pathway are not yet fully understood and, in some cases, even identified. However, there are increasing data that prove the existence of non-canonical Wnt signaling and demonstrate its involvement in different developmental processes. In vertebrates, Wnt-11 and Wnt-5A can activate the Wnt/JNK pathway, which resembles the planar cell polarity pathway in Drosophila. The Wnt/Ca(2+)-pathway has only been described in Xenopus and zebrafish so far and it is unclear whether it also exists in other organisms. Two recent papers provide us with new insight into non-canonical Wnt signaling by (1) presenting a new intracellular mediator of non-canonical signaling in Xenopus1 and (2) implicating the existence of an additional non-canonical Wnt signaling pathway in flies.  相似文献   

16.
Genetic and biochemical studies have suggested that signal transduction by the Wnt pathway is very different to the familiar protein-kinase cascade of the Ras pathway. Among the more intriguing findings is that beta-catenin, a component of intercellular adhesive junctions, is a central component in the Wnt signalling pathway. Recent studies suggest ways in which beta-catenin might serve as a focal point for regulation of adhesion, gene expression and cell proliferation.  相似文献   

17.
Since the three main pathways (the Wnt, VegT and BMP pathways) involved in organizer and axis formation in the Xenopus embryo are now characterized, the challenge is to understand their interactions. Here three comparisons were made. Firstly, we made a systematic comparison of the expression of zygotic genes in sibling wild-type, VegT-depleted (VegT(-)), beta-catenin-depleted (beta-catenin(-)) and double depleted (VegT(-)/beta-catenin(-)) embryos and placed early zygotic genes into specific groups. In the first group some organizer genes, including chordin, noggin and cerberus, required the activity of both the Wnt pathway and the VegT pathway to be expressed. A second group including Xnr1, 2, 4 and Xlim1 were initiated by the VegT pathway but their dorsoventral pattern and amount of their expression was regulated by the Wnt pathway. Secondly, we compared the roles of the Wnt and VegT pathways in producing dorsal signals. Explant co-culture experiments showed that the Wnt pathway did not cause the release of a dorsal signal from the vegetal mass independent from the VegT pathway. Finally we compared the extent to which inhibiting Smad 1 phosphorylation in one area of VegT(-), or beta-catenin(-) embryos would rescue organizer and axis formation. We found that BMP inhibition with cm-BMP7 mRNA had no rescuing effects on VegT(-) embryos, while cm-BMP7 and noggin mRNA caused a complete rescue of the trunk, but not of the anterior pattern in beta-catenin(-) embryos.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号