首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

2.
Distribution and biomass of salps and Antarctic krill (Euphausia superba) were investigated near the South Shetland Islands during austral summer 1990–1991. Salp biomass ranged between 0 and 556 mgC·m–3 and was greatest at a station in the Bransfield Strait in late December 1990. Salp biomass was lower than that of E. superba. Two species of salps; Salpa thompsoni and Ihlea racovitzai were found, and the former was dominant numerically. Spatial distribution and generation composition of these two species was different. Spatial distributions of salps and E. superba did not overlap particularly so the January–February period. While E. superba was found mainly in the coastal area which showed high-chlorophyll a values, salps exhibited high biomass in the oceanic area with low chlorophyll a concentrations. Predation by salps on small krill and the competitive removal of food by them, are discussed as potential reasons for the relatively low abundance of E. superba at the stations where salps were present in great numbers.  相似文献   

3.
Micronekton and macrozooplankton were collected during the austral spring of 1993 in the NW Weddell Sea. Sampling was done in three areas of the marginal ice zone: pack ice, ice edge, and open water, to examine the short-term effects of the spring phytoplankton bloom on the distribution and abundance of dominant fish and invertebrate species. Significant differences were observed for several common species, including Salpa thompsoni,Euphausia superba, Electrona antarctica, Gymnoscopelus braueri,and G. opisthopterus. Increased abundance seaward of the pack ice for these species is attributed to elevated phytoplankton and zooplankton biomass at the ice edge and in the open water areas. Distribution of the hyperiid amphipods, Cyllopus lucasii and Vibilia stebbingi mirrored that of S. thompsoni. No distributional trends between the areas were observed for Thysanoessa macrura, the amphipods Cyphocaris richardi and Primno macropa, the decapod shrimp Pasiphaea scotiae, the scyphomedusae Atolla wyvilli and Periphylla periphylla, and chaetognaths, indicating a trophic independence from the ice-edge bloom for these species. Lower occurrence of the mesopelagic fish Bathylagus antarcticus and Cyclothone microdon under the ice suggested that trophic repercussions of the spring bloom can also extend to deeper living species.  相似文献   

4.
Summary Zooplankton was sampled with RMT (1+8) gear on a synoptic grid of stations centred on South Georgia during the austral summer (November/December 1981) and winter (July/August 1983). This initial paper compares zooplankton biomass, vertical distribution and species composition from RMT 1 catches in the oceanic portion of the grid (water depth greater than 2000 m) during the two surveys. In the winter survey, mean zooplankton biomass within the top 1000 m of the water column was 68% of its summer level. This drop was largely due to a decrease in abundance of krill (Euphausia superba), although biomass of copepods and remaining zooplankton also decreased. Copepods averaged 48% of total biomass in summer and winter, but outnumbered all other taxa put together by a factor of 10. Antarctic epipelagic species predominated around the island in the summer survey but tended to be replaced by sub-Antarctic or cosmopolitan species during the winter survey. The majority of zooplankton also showed a downwards seasonal migration out of the top 250 m layer in winter. However, several epipelagic species, including E. superba, did not migrate, and these tended to have the largest summer-winter differences in overall abundance. These trends were attributed to variation in the position of the Polar Front, which lay north of the island during the summer survey but lay across the survey area in winter, resulting in a greater influence of sub-Antarctic water and the displacement of Antarctic species.  相似文献   

5.
Chaenocephalus aceratus (Family Channicthyidae) is one of the dominant species of demersal fish living on the South Georgia shelf where it is caught in low numbers as by-catch in the mackerel icefish and Antarctic krill commercial fisheries. Data collected during 14 demersal fish surveys, from 1986 to 2006, are analysed to investigate biomass, distribution, growth and diet. Biomass estimates from a swept area method ranged from 4,462 to 28,740 tonnes on the South Georgia and Shag Rock shelves although few fish were caught at Shag Rocks. Analysis of length frequency data indicated that growth was fast in the first five years with males and females attaining lengths at first spawning of 440 mm TL and 520 mm TL. The diet was comprised of fish and crustaceans, with an ontogenetic shift in diet from Euphausia superba and mysids to benthic fish and decapods observed to begin at 250 mm TL. In larger fish (>500 mm TL) the diet was dominated by fish. C. aceratus diet is sufficiently different from the other species of channichthyids around South Georgia to suggest that these species have undergone resource partitioning.  相似文献   

6.
The spatial distribution, biomass and size structure of key mesozooplankton species and micronekton in the Bransfield Strait (Antarctica) are described in relation to environmental variables during the austral summer 2001. Stratified (BIONESS) biological sampling at five depth-ranges and CTD casts were performed at 40 stations, including a cross-Strait transect. Six families, 11 genera and 16 species composed the total catch of larval and juvenile fish, which were more abundant in the upper 75 m. Trematomus scotti was the most abundant fish and large individuals dominated at depths >75 m. The fish distribution patterns were associated with the main water masses in the area and with bottom depth. Spatial segregation in density and biomass of krill (Euphausia superba) and salps (Salpa thompsoni) was observed at a relatively small scale, in relation to the main water masses. Also, size-related spatial segregation was found in krill. The present study suggests that the spatial distribution of krill, salps and early life stages of fish, are influenced by the main water masses in the Strait, and that species may adapt their reproductive strategies not only to seasonal production peaks, but to transport processes within water bodies that maximise their fitness through optimum temperature and/or trophic environments.  相似文献   

7.
The food of some Aantarctic fish in the western Ross Sea in summer 1979   总被引:1,自引:0,他引:1  
Summary The food of fish in the western area of the Ross Sea was studied. Four locations were sampled using a bottom trawl. Twenty-four species of fish belonging to six families were caught. Pleuragramma antarcticum was the most important species among them and Chionodraco myersi was also abundant. The food chain, starting from small crustaceans such as Parathemisto gaudichaudii, copepods and Euphausia crystallorophias and extending through P. antarcticum to channichthyids is considered the most important chain in the food web of the fish community of the western Ross Sea in summer. The significance of the ecological role of P. antarcticum in the food web of the fish community of this area where the krill, Euphausia superba, is scarce is discussed.  相似文献   

8.
Food and feeding ecology of emperor penguins in the eastern Weddell Sea   总被引:3,自引:3,他引:0  
Summary The diet of the emperor penguin Aptenodytes forsteri in the eastern Weddell Sea, Antarctica was studied during October and November 1986 by stomach content analysis. Emperor penguins fed mainly on Antarctic krill Euphausia superba, Antarctic silverfish Pleuragramma antarcticum and squid Psychroteuthis glacialis. Benthic prey was not found. The prey composition suggests two different feeding strategies, shallow dives exploring the rugged underside of sea ice where krill is taken, and deep dives when mesopelagic fish and squid are consumed. Chicks were fed on average every 1.44 days.  相似文献   

9.
 The diet of the diving petrels Pelecanoides georgicus and P. urinatrix was studied during 1986 (P. georgicus) and 1987 (both species) by lavaging adults as they returned to feed chicks on Bird Island, South Georgia. The diet of both species was dominated by crustaceans, in particular euphausiids (mainly Euphausia superba and some Thysanoessa), which contributed 47–76% of the biomass of crustaceans in the diet of P. georgicus, and copepods, which contributed 71% of the biomass of crustaceans in the diet of P. urinatrix. Calanoides acutus was the most numerous copepod in the diet of both species; however, Rhincalanus gigas was more common in P. urinatrix than in P. georgicus. The dominant amphipod in the diet of P. georgicus, Primno macropa, was absent from the diet of Pelecanoides urinatrix, in which Themisto gaudichaudii (rare in Pelecanoides georgicus) dominated. Dietary differences were maintained in the period (2 weeks of a total of 10 weeks) when both species were simultaneously rearing chicks. Knowledge of the prey species and of the diving abilities and foraging habits of diving petrels suggests that at South Georgia Pelecanoides urinatrix feeds closer inshore and dives deeper than Pelecarnoides georgicus. Received: 24 August 1995/Accepted: 10 February 1996  相似文献   

10.
Euphausia crystallorophias is the dominant zooplankton species in the neritic seas of Antarctica, where it occurs in similar abundances to those of Euphausia superba in more offshore areas. Despite its great abundance and probable ecological significance, few details are known of this species’ development, life history and ecology. This study found that E. crystallorophias spawned in Ellis Fjord from late November to early December and completed its larval development under the sea ice during the Antarctic winter. The mean time for E. crystallorophias eggs to develop to furcilia stage VI was 235.5 days, which is virtually identical to the developmental time already reported in the laboratory, but almost twice that of E. superba. This slow development rate is likely to be due either to the low water temperatures (<0°C) in which E. crystallorophias lives, or to low levels of food being available over winter. Received: 30 August 1995/Accepted: 11 December 1995  相似文献   

11.
Euphausia crystallorophias and E. superba larvae often overlap in distribution in Antarctic coastal regions. Here, we describe the morphology and ecology of E. crystallorophias furcilia stages F3–F6, with emphasis on characteristics that distinguish them from E. superba, based on samples collected west of the Antarctic Peninsula during autumn and winter 2001 and 2002. During autumn most E. crystallorophias occurred as F4s (53%) and F5s (35%), while E. superba occurred in all furcilia stages (F1–F6). During winter, F6 was the dominant stage (>67%) for both species. On average, body lengths of E. crystallorophias larval stages were significantly greater than those of E. superba. During autumn, densities of the two species were similar (range: 0.003–11.8 m–3) at many on-shelf stations, with lower densities during winter. Where both species occurred, >58% of E. crystallorophias furcilia were collected between 50 and 100 m depth, while 82% of E. superba were shallower (25–50 m). Younger stages of E. crystallorophias occurred more frequently (54% of F3s) in water >100 m than older stages (11% of F6s). Thus, many larval E. crystallorophias were vertically segregated from E. superba, thereby reducing grazing competition between the young of these morphologically similar species.  相似文献   

12.
To examine the seasonal succession of the entire zooplankton community in Lake Biwa, zooplankton biomass (on an areal basis) and its distribution patterns among crustaceans, rotifers and ciliates were studied in the north basin from April 1997 to June 1998. Seasonal changes in phytoplankton and population dynamics of Daphnia galeata were also examined to assess food condition and predation pressure by fish. From March to November, crustaceans dominated zooplankton biomass, but rotifers and ciliates were dominant from December to February. Among crustaceans, Eodiaptomus japonicus was the most abundant species, followed by D. galeata. Zooplankton biomass increased from January to a peak in early April, just before the spring bloom of phytoplankton, then decreased in mid-April when mortality rate of D. galeata increased. From mid-June, zooplankton increased and maintained a high level until the beginning of November. During this period, both birth and mortality rates of D. galeata were relatively high and a number of rotifer and crustacean species were observed. However, their abundances were very limited except for E. japonicus which likely preys on ciliates and rotifers. In Lake Biwa, food sources other than phytoplankton, such as resuspended organic matter from the sediments, seems to play a crucial role in zooplankton succession from winter to early spring, while zooplankton community seems to be regulated mainly by fish predation from summer to fall.  相似文献   

13.
The horizontal and vertical distribution and population structure of euphausiids in the Ross Sea and its adjacent waters were investigated during the summers of 2004/2005 using stratified towed samples. Nine species of euphausiids occurred in the survey area. Among them, Euphausia triacantha was dominant in biomass north of the southern boundary of the Antarctic circumpolar current (SB). Thysanoessa spp. was widely distributed north of the continental slope, while E. superba was distributed from the SB to the slope, where it showed the highest biomass. Juvenile E. superba was distributed offshore near the SB and remained at the surface, but gravid females were dominant in the slope and mainly occurred in the middle layers (400–600 m). Adult and juvenile E. crystallorophias were found at 200–300 m in the colder water of the continental shelf. In general, the peak biomass of euphausiids was found in the mid layers of the Ross Sea area. The life span and the number of spawns for major species are also discussed.  相似文献   

14.
15.
The Ross Sea, a large, high-latitude (72–78°S) embayment of the Antarctic continental shelf, averages 500 m deep, with troughs to 1,200 m and the shelf break at 700 m. It is covered by pack ice for 9 months of the year. The fish fauna of about 80 species includes primarily 4 families and 53 species of the endemic perciform suborder Notothenioidei. This review focuses on the diet and role in the food web of notothenioids and top-level bird and mammal predators, and also includes new information on the diets of artedidraconids and bathydraconids. Although principally a benthic group, notothenioids have diversified to form an adaptive radiation that includes pelagic and semipelagic species. In the southern Ross Sea, notothenioids dominate the fish fauna at levels of abundance and biomass >90% and are, therefore, inordinately important in the food web. Antarctic krill (Euphausia superba) and mesopelagic fishes are virtually absent from the shelf waters of the Ross Sea. Of the four notothenioid families, nototheniids show the most ecological and dietary diversification, with pelagic, cryopelagic, epibenthic and benthic species. Neutrally buoyant Pleuragramma antarcticum constitutes >90% of both the abundance and biomass of the midwater fish fauna. Most benthic nototheniids are opportunistic and feed on seasonally or locally abundant zooplanktonic prey. Artedidraconids are benthic sit-and-wait predators. Larger bathydraconids are benthic predators on fish while smaller species feed mainly on benthic crustaceans. Channichthyids are less dependent on the bottom for food than other notothenioids. Some species combine benthic and pelagic life styles; others are predominantly pelagic and all consume euphausiids and/or fish. South polar skuas, Antarctic petrels, Adélie and emperor penguins, Weddell seals and minke and killer whales are the higher vertebrate components of the food web, and all prey on notothenioids to some extent. Based on the frequency of occurrence of prey items in the stomachs of fish, bird and mammal predators, P. antarcticum and ice krill E. crystallorophias are the key species in the food web of the Ross Sea. P. antarcticum is a component of the diet of at least 11 species of nototheniid, bathydraconid and channichthyid fish and, at frequencies of occurrence from 71 to 100%, is especially important for Dissostichus mawsoni, Gvozdarus svetovidovi and some channichthyids. At least 16 species of notothenioids serve as prey for bird and mammal predators, but P. antarcticum is the most important and is a major component of the diet of south polar skua, Adélie and emperor penguins and Weddell seals, at frequencies of occurrence from 26 to 100%. E. crystallorophias is consumed by some nototheniid and channichthyid fish and can be of importance in the diet of emperor and Adélie penguins, although in the latter case, this is dependent on location and time of year.Unlike the linear phytoplanktonE. superbaconsumers of the E. superba food chain hypothesized for much of the Southern Ocean, the food web of the Ross Sea shelf is non-linear, with complex prey-predator interactions. Notothenioid fish play a key role: as predators, they occupy most of the trophic niches available in the ecosystem, relying on benthic, zooplanktonic and nektonic organisms; as prey, they are important food resources for each other and for most top predators living and foraging on the shelf. They also constitute the major link between lower (invertebrates) and higher (birds and mammals) levels of the food web. This is especially true for P. antarcticum. Along with E. crystallorophias, its ecological role in the Ross Sea is equivalent to that of myctophids and E. superba elsewhere in the Southern Ocean.  相似文献   

16.
The Zooplankton community of Croker Passage,Antarctic Peninsula   总被引:5,自引:2,他引:3  
Summary Zooplankton species composition, abundance and vertical distribution were investigated in the upper 1000 m of Croker Passage, Antarctic Peninsula during the austral fall (March–April, 1983). 106 species were identified, many being mesopelagic and reported previously from the Southern Ocean. The most numerous species (>1000/100 m3) were the copepodsMetridia gerlachei, Microcalanus pygmaeus, Oncaea antarctica andOncaea curvata. Oncaea curvata alone constituted half the zooplakton population. Zooplankton biomass was dominated by three copepod species,Metridia gerlachei, Calanoides aculus andEuchaeta antarctica,which comprised 74% of the biomass. Size analysis revealed most of the zooplankton numbers were in the >1 mm fraction. The biomass distribution was polymodal with major maxima in the >1 mm and the 4–4.9 mm size classe. The >1 mm peak, exclusive of protozoans, was primarily copepod nauplii and copepodites ofOncaea, Metridia andMicrocalanus. The 4–4.9 mm peak was mostlyCalanoides acutus andMetridia gerlachei.All of the principal species had broad vertical distributions both day and night. There was some suggestion of diel vertial migration byMetridia gerlachei andEuchaeta antarctica, with segments of their populations migrating into the upper 100 m and 200 m, respectively, at night. Most of the dominant and subdominant species were concentrated below 200 m,with only the subdominantOithona similis having its maximum in the epipelagic zone. The occurrence of zooplankton at winter depths appears to have been earlier in Croker Passage in 1983 than has been generally reported for waters south of the Polar Front.Total standing stock of net-caught zooplankton (>15 mm) in the upper 1000 m was estimated at 3.1 gDW/m2, which is somewhat higher than values reported for the West Wind Drift and for open ocean areas of temperate to tropical latitudes.Euphausia superba (17–52 mm) dominated the pelagic biomass, exceeding zooplankton standing stock under a square meter of ocean by a factor of 15. This is in contrast to lower latitudes where zooplankton biomass is usually greater than macrozooplankton-micronekton.  相似文献   

17.
Specimens of flounder Paralichthys orbignyanus (Jenyns, 1842) were collected in Bahía Blanca estuary between February 1997 and January 1998, and their feeding habits were examined in relation to season and size class. The stomach contents of 823 specimens, ranging from 70 to 875 mm total length, were analysed. Their diet included organisms from 17 taxa. The highest vacuity index values were found during autumn and winter. The stomach fullness index indicated that flounders increased their feeding activity between October and March, reaching a highest point in February and decreasing after February. Fish were the primary prey item in frequency, number and weight, followed by crustaceans, such as shrimps and crabs. A seasonal and size class variation was detected in the diet. During summer all-size flounders consumed mainly fish. In autumn, for all-size classes the main food were fish and crustaceans even though fish were dominant in terms of biomass. In spring, crustaceans (mysids Arthromysis magellanica (Cunningham), shrimps Artemesia longinaris Bate, and prawns Pleoticus muelleri (Bate)) were the dominant prey in terms of number and biomass for flounders ≤ 450 mm TL. Size classes larger than 451 mm TL fed on crustaceans and fish though the most important prey item in terms of biomass was fish. In Bahía Blanca estuary,P. orbignyanus evidenced mainly an ichthyophagou – carcinophagous diet. The results collected from the present study lead to conclude that P. orbignyanus shows, in this region, a clear preference for fish.  相似文献   

18.
In comparison with other bathydraconids, all species of the genus Bathydraco are poorly known from an ecological perspective. The diet of juvenile Bathydraco marri Norman, 1938 was studied for the first time in specimens collected in the southwestern Ross Sea during summer 1998. Fish were collected in a single otter trawl catch at 330–340 m depth. The stomach content analysis showed that this species fed exclusively on crustaceans. Overall, 20 prey taxa were identified to genus or species level. Mysids, amphipods and copepods were the most important prey in decreasing order of importance. Other prey, such as Euphausia superba, isopods and tanaids were eaten occasionally and in very small amounts. A multivariate analysis was applied to feeding data to assess ontogenetic or sex-related changes in diet. No difference was detected between sexes, whereas diet of small and large fish differed in some degree. An ontogenetic shift from small and pelagic crustaceans such as copepods to benthic–benthopelagic prey such as amphipods and mysids was observed. Relating present results with published data on physiological characteristics of B. marri, it was possible to infer their feeding behaviour and mode of life. Like other bathydraconids, this species appeared to be an inactive and sluggish fish, which relied on more or less motile benthic or epibenthic prey adopting a “sit and wait” feeding strategy. On the other hand, smaller fish seem to be more active, feeding also on pelagic prey such as copepods that can be seasonally abundant, thus reducing the intraspecific competition for food.  相似文献   

19.
The diet of the alfonsino Beryx splendens was determined from examination of stomach contents of 287 specimens of 17 to 48 cm fork length (LF) sampled by bottom trawl on the Chatham Rise to the east of New Zealand. Prey items were predominantly crustaceans and mesopelagic fishes. The most important prey species by mass was Sergestes spp. prawns, followed by the myctophid Lampanyctodes hectoris, and then Pasiphaea spp. prawns. Multivariate analyses indicated that small crustaceans (euphausiids and amphipods) were most important in the diet of smaller B. splendens (100–424 g, 17–26·5 cm), with larger prawn species and mesopelagic fishes most important for larger fish (425–2070 g, 27–46 cm). Moon phase and bottom temperature also explained some of the variability in diet, but the moon phase effect was difficult to explain, and the bottom temperature effect may have been confounded, to some extent, with LF. The results indicated that B. splendens were moderately selective feeders that foraged primarily in the mesopelagic layers. The diet of New Zealand B. splendens is generally similar to those reported from other areas, i.e. dominated by mesopelagic crustaceans and fishes, and with a transition from small crustaceans to fishes with increasing predator size.  相似文献   

20.
Summary Chitinolytic activity was quantified in euphausiid integuments in relation to moulting. In Euphausia superba, shortly before moult the activity increased in chitinase and N-acetyl--D-glucosaminidase to pronounced maxima indicating the onset of massive resorption of cuticular material. Enzymatic activity of E. superba corresponded to values in Meganyctiphanes norvegica, a boreal euphausiid which was investigated for comparison, as well as in insecta. Antarctic krill from winter catches displayed activities comparable to summer material suggesting physiological preparation for moulting. Accordingly, moulting did not cease during winter. Both enzymes were also active in the digestive tract in summer as well as in winter krill: chitin containing food of phyto-and zooplankton origin is digestable. Seasonally stable activities did not point to changes in nutritional preference. In contrast to other crustacea, digestive enzyme activity was not reduced around moult, suggesting a high capacity to continuously utilize food sources including chitin. This property can be linked directly to the high energy need caused by the necessity of constant active swimming in both krill species.Supported by German Research Counsil (DFG), grant-nos. Ad 24/9 and Bu 548/1Dedicated to Professor Dr. G. Hempel on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号