首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rates of dipicolinic acid (Dpa) release and the rates of death were studied for spores of five strains of Bacillus stearothermophilus . It was observed that a highly significant relationship exists between the rate of Dpa release and rate of spore death for the four out of five strains tested and for all test temperatures. At 115C the rate of Dpa release was found to be faster than the rate of death, equal at 120C and slower at 125C. The role of Dpa in heat resistance was considered and a theory is proposed to explain the mechanism by which the heat resistance of bacterial spores is overcome.  相似文献   

2.
3.
4.
5.
6.
The content of dipicolinic acid (DPA) was assayed in the spores of Bacillus anthracoides 96 during various stages of its growth. The content of DPA was ca. 10.7 per cent of the dry biomass weight in the seven-day-old culture containing 96 to 99 per cent of the spores in a "starvation" medium. The morphology of the culture was modified, and the content of DPA in the spores fell to 3.6 per cent half an hour after the inoculation into the medium favourable for the growth (MPA). During the following one to four hours of the germination, the refraction index of the spores and the content of DPA in them decreased (the content of DPA to 2 per cent).  相似文献   

7.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

8.
The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of approximately 9 and a temperature optimum of 60 degrees C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl(2). Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca(2+) almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca(2+) and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca(2+)-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca(2+)-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.  相似文献   

9.
10.
Abstract Two dipicolinic acid (DPA)-binding macromolecules with molecular masses of about 440 kDa and 230 kDa were detected in the soluble fractions of dormant and germinated spores of Bacillus subtilis using native PAGE and an immunological technique. In SDS-PAGE, only one band with the molecular mass of about 50 kDa was found. Proteinase K partially digested the 440-kDa macromolecule of dormant spores to convert it into a 230-kDa one, and completely digested both the 440-kDa and 230-kDa bands of germinated spores. DNase I did not affect either DPA-binding macromolecules. This suggests that the two DPA-binding macromolecules are of similar origin, their main component is protein and a conformational change may occur during germination. DPA was not dissociated from the DPA-binding macromolecules by extensive dialysis and SDS treatment, suggesting the presence of a covalent bonding.  相似文献   

11.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105 degrees C, 120 degrees C, and 131 degrees C, respectively. The estimated Z values were 6.3 degrees C, 6.1 degrees C, and 9.7 degrees C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108 degrees C, 121 degrees C, and 131 degrees C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

12.
A Bacillus subtilis mutant is described which forms heat-resistant spores only in the presence of external dipicolinic acid (DPA). The mutation, dpa-1, is localized in a new sporulation locus, linked to pyrA. The dpa-1 strain is unable to synthesize DPA but can incorporate external DPA. The amount of DPA incorporated, the frequency of heat-resistant spores and their degree of resistance are all dependent on the concentration of external DPA. Spores of dpa- 1 strains exhibit normal resistance to most chemicals, including octanol and chloroform, but not to ethanol, pyridine, phenol and trichloroacetic acid. Complete resistance to the latter group depends on DPA. DPA incorporation is slow and apparently requires an energy supply but not protein synthesis. Direct involvement of DPA in the heat-resistance of the spores is suggested. Thin sections of DPA-less spores exhibit clearly visible cytoplasmic membranes and ribosomes. These structures are absent or less visible in the core of spores obtained with added DPA.  相似文献   

13.
14.
15.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation in the DPA synthetase operon dpaAB were assayed for their resistance to UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight (290 to 400 nm), and sunlight from which the UV-B portion was filtered (325 to 400 nm). In all cases, air-dried DPA-less spores were significantly more UV sensitive than their isogenic DPA-containing counterparts. However, the degree of difference in UV resistance between the two strains was wavelength dependent, being greatest in response to radiation in the UV-B portion of the spectrum. In addition, the inactivation responses of DPA-containing and DPA-less spores also depended strongly upon whether spores were exposed to UV as air-dried films or in aqueous suspension. Spores lacking the gerA, gerB, and gerK nutrient germination pathways, and which therefore rely on chemical triggering of germination by the calcium chelate of DPA (Ca-DPA), were also more UV sensitive than wild-type spores to all wavelengths tested, suggesting that the Ca-DPA-mediated spore germination pathway may consist of a UV-sensitive component or components.  相似文献   

16.
17.
Thermal inactivation and injury of Bacillus stearothermophilus spores   总被引:2,自引:0,他引:2  
Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.  相似文献   

18.
19.
20.
M. LÓPEZ, M. MAZAS, I. GONZÁLEZ, J. GONZALEZ AND A. BERNARDO. 1996. The effects of different heating systems on the heat resistance of Bacillus stearothermophilus spores (ATCC 7953, 12980, 15951 and 15952) were investigated. Spores were heated in distilled water, Sorensen buffer (0.18 moll−1), McIlvaine buffer (0.0025-0.18 moll−1), and several solutions containing sodium chloride (0.0612%), sodium nitrite (125 ppm), potassium sorbate (0.1%) and sodium benzoate (0.1%) over a wide range of temperatures (115-140°C). D-values obtained for McIlvaine and Sorensen buffers, at the same molarities, were not significantly different (P > 0.05), but decimal reduction times increased as phosphate concentrations in the solutions decreased. The concentrations, in which statistically significant differences (P < 0.05) were obtained, varied among strains. Among the additives assayed, only sodium chloride reduced heat resistance, being effective at concentrations as low as 0.06%. The z-values calculated in this study ranged from 6.99 to 8.40 with a mean value of 7.60±0.45. Although z-values observed for salt and buffers (180 moll−1) were slightly higher than those obtained in the other conditions assayed, the difference was not statistically significant (P > 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号