首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of apparent streaming potentials elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution were studied by assessing the time courses of: (a) the change in transepithelial voltage (Vms). (b) the change in osmolality at the cell surface (estimated with a tetrabutylammonium [TBA+]-selective microelectrode, using TBA+ as a tracer for sucrose), and (c) the change in cell impermeant solute concentration ([TMA+]i, measured with an intracellular double-barrel TMA(+)-selective microelectrode after loading the cells with TMA+ by transient permeabilization with nystatin). For both sucrose addition and removal, the time courses of Vms were the same as the time courses of the voltage signals produced by [TMA+]i, while the time courses of the voltage signals produced by [TBA+]o were much faster. These results suggest that the apparent streaming potentials are caused by changes of [NaCl] in the lateral intercellular spaces, whose time course reflects the changes in cell water volume (and osmolality) elicited by the alterations in apical solution osmolality. Changes in cell osmolality are slow relative to those of the apical solution osmolality, whereas lateral space osmolality follows cell osmolality rapidly, due to the large surface area of lateral membranes and the small volume of the spaces. Analysis of a simple mathematical model of the epithelium yields an apical membrane Lp in good agreement with previous measurements and suggests that elevations of the apical solution osmolality elicit rapid reductions in junctional ionic selectivity, also in good agreement with experimental determinations. Elevations in apical solution [NaCl] cause biphasic transepithelial voltage changes: a rapid negative Vms change of similar time course to that of a Na+/TBA+ bi-ionic potential and a slow positive Vms change of similar time course to that of the sucrose-induced apparent streaming potential. We conclude that the Vms changes elicited by addition of impermeant solute to the apical bathing solution are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow from the cells to the apical bathing solution and from the lateral intercellular spaces to the cells. Our results do not support the notion of junctional solute-solvent coupling during transepithelial osmotic water flow.  相似文献   

2.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

3.
A new mathematical model of ion movements in airway epithelia is presented, which allows predictions of ion fluxes, membrane potentials and ion concentrations. The model includes sodium and chloride channels in the apical membrane, a Na/K pump and a cotransport system for Cl- with stoichiometry Na+:K+:2Cl- in the basolateral membrane. Potassium channels in the basolateral membrane are used to regulate cell volume. Membrane potentials, ion fluxes and intracellular ion concentration are calculated as functions of apical ion permeabilities, the maximum pump current and the cotransport parameters. The major predictions of the model are: (1) Cl- concentration in the cell is determined entirely by the intracellular concentration of negatively charged impermeable ions and the osmotic conditions; (2) changes in intracellular Na+ and K+ concentrations are inversely related; (3) cotransport provides the major driving force for Cl- flux, increases intracellular Na+ concentration, decreases intracellular K+ concentration and hyperpolarizes the cell interior; (4) the maximum rate of the Na/K pump, by contrast, has little effect on Na+ or Cl- transepithelial fluxes and a much less pronounced effect on cell membrane polarization; (5) an increase in apical Na+ permeability causes an increase in intracellular Na+ concentration and a significant increase in Na+ flux; (6) an increase in apical Cl- permeability decreases intracellular Na+ concentration and Na+ flux; (7) assuming Na+ and Cl- permeabilities equal to those measured in human nasal epithelia, the model predicts that under short circuit conditions, Na+ absorption is much higher than Cl- secretion, in agreement with experimental measurements.  相似文献   

4.
1. Transepithelial electrical p.d. (Vms), short circuit current (Isc) and transepithelial resistance (Rep) were determined in rabbit nasal mucosa and were compared with the equivalent parameters of human nasal mucosa. 2. Vms was about 1 mV (submucosa positive) in the absence of glucose, but increased continuously in the presence of glucose. Since Isc also increased in parallel and Rep remained constant (about 40 omega cm2), glucose effect was to power pumping. 3. Diffusion potentials raised by reducing luminal Cl- or Na+ or Cl- and Na+ concentrations were also measured and compared with values obtained in trachea and gallbladder. 4. Evidence is produced, with sounder basis than in trachea, that junctional pathways in airway epithelia are lined with fixed positive charges (which make anions more permeable than cations), unlike junctional pathways of the gastrointestinal tract which are lined with fixed negative charges.  相似文献   

5.
The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/- 8 to 122 +/- 7 omega.cm2, and a decrease in fractional apical membrane resistance (fRa) from 0.93 +/- 0.02 to 0.83 +/- 0.03. The rapid initial hyperpolarization of Vmc and Vcs was followed by a slower depolarization of cell membrane voltages and a lumen-negative change in transepithelial voltage (Vms). This phase also included an additional decrease in fRa. Removal of the ATP caused a further depolarization of membrane voltages followed by a hyperpolarization and then a return to control values. fRa fell to a minimum after removal of ATP and then returned to control values as the cell membrane voltages repolarized. Similar responses could be elicited by ADP but not by adenosine. The results of two-point cable experiments revealed that ATP induced an initial increase in cell membrane conductance followed by a decrease. Transient elevations of mucosal solution [K+] induced a larger depolarization of Vmc and Vcs during exposure to ATP than under control conditions. Reduction of mucosal solution [Cl-] induced a slow hyperpolarization of Vmc and Vcs before exposure to ATP and a rapid depolarization during exposure to ATP. We conclude that ATP4- is the active agent and that it causes a concentration-dependent increase in apical and basolateral membrane K+ permeability. In addition, an apical membrane electrodiffusive Cl- permeability is activated by ATP4-.  相似文献   

6.
Microelectrode techniques were employed to measure membrane potentials, the electrical resistance of the cell membranes, and the shunt pathway, and to compute the equivalent electromotive forces (EMF) at both cell borders in toad urinary bladder epithelium before and after reductions in mucosal sodium concentration. Basal electrical parameters were not significantly different from those obtained with impalements from the serosal side, indicating that mucosal impalements do not produce significant leaks in the apical membrane. A decrease in mucosal Na concentration caused the cellular resistance to increase and both apical and basolateral EMF to depolarize. When Na was reduced from 112 to 2.4 mM in bladders with spontaneously different baseline values of transepithelial potential difference (Vms), a direct relationship was found between the change in Vms brought about by the Na reduction and the base-line Vms before the change. A direct relationship was also found by plotting the change in EMF at the apical or basolateral border caused by a mucosal Na reduction with the corresponding base-line EMF before the change. These results indicate that resting apical membrane EMF (and, therefore, resting apical membrane potential) is determined by the Na selectivity of the apical membrane, whereas basolateral EMF is at least in part the result of rheogenic Na transport. These results are consistent with data of others that suggested a link between the activity of the basolateral Na pump and apical Na conductance.  相似文献   

7.
Osmotic water permeability of Necturus gallbladder epithelium   总被引:6,自引:5,他引:1       下载免费PDF全文
An electrophysiological technique that is sensitive to small changes in cell water content and has good temporal resolution was used to determine the hydraulic permeability (Lp) of Necturus gallbladder epithelium. The epithelial cells were loaded with the impermeant cation tetramethylammonium (TMA+) by transient exposure to the pore-forming ionophore nystatin in the presence of bathing solution TMA+. Upon removal of the nystatin a small amount of TMA+ is trapped within the cell. Changes in cell water content result in changes in intracellular TMA+ activity which are measured with intracellular ion-sensitive microelectrodes. We describe a method that allows us to determine the time course for the increase or decrease in the concentration of osmotic solute at the membrane surface, which allows for continuous monitoring of the difference in osmolality across the apical membrane. We also describe a new method for the determination of transepithelial hydraulic permeability (Ltp). Apical and basolateral membrane Lp's were assessed from the initial rates of change in cell water volume in response to anisosmotic mucosal or serosal bathing solutions, respectively. The corresponding values for apical and basolateral membrane Lp's were 0.66 x 10(-3) and 0.38 x 10(-3) cm/s.osmol/kg, respectively. This method underestimates the true Lp values because the nominal osmotic differences (delta II) cannot be imposed instantaneously, and because it is not possible to measure the true initial rate of volume change. A model was developed that allows for the simultaneous determination of both apical and basal membrane Lp's from a unilateral exposure to an anisosmotic bathing solution (mucosal). The estimates of apical and basal Lp with this method were 1.16 x 10(-3) and 0.84 x 10(-3) cm/s.osmol/kg, respectively. The values of Lp for the apical and basal cell membranes are sufficiently large that only a small (less than 3 mosmol/kg) transepithelial difference in osmolality is required to drive the observed rate of spontaneous fluid absorption by the gallbladder. Furthermore, comparison of membrane and transepithelial Lp's suggests that a large fraction of the transepithelial water flow is across the cells rather than across the tight junctions.  相似文献   

8.
A study of the mechanisms of the effects of amphotericin B and ouabain on cell membrane and transepithelial potentials and intracellular K activity (alpha Ki) of Necturus gallbladder epithelium was undertaken with conventional and K-selective intracellular microelectrode techniques. Amphotericin B produced a mucosa-negative change of transepithelial potential (Vms) and depolarization of both apical and basolateral membranes. Rapid fall of alpha Ki was also observed, with the consequent reduction of the K equilibrium potential (EK) across both the apical and the basolateral membrane. It was also shown that, unless the mucosal bathing medium is rapidly exchanged, K accumulates in the unstirred fluid layers near the luminal membrane generating a paracellular K diffusion potential, which contributes to the Vms change. Exposure to ouabain resulted in a slow decrease of alpha Ki and slow depolarization of both cell membranes. Cell membrane potentials and alpha Ki could be partially restored by a brief (3-4 min) mucosal substitution of K for Na. Under all experimental conditions (control, amphotericin B, and ouabain), EK at the basolateral membrane was larger than the basolateral membrane equivalent emf (Eb). Therefore, the K chemical potential difference appears to account for Eb and the magnitude of the cell membrane potentials, without the need to postulate an electrogenic Na pump. Comparison of the rate of Na transport across the tissue with the electrodiffusional K flux across the basolateral membrane indicates that maintenance of a steady-state alpha Ki cannot be explained by a simple Na,K pump-K leak model. It is suggested that either a NaCl pump operates in parallel with the Na,K pump, or that a KCl downhill neutral extrusion mechanism exists in addition to the electrodiffusional K pathway.  相似文献   

9.
Transepithelial fluid transport (Jv) and intracellular Na+ and Cl- activities (aNai, aCli) were measured in isolated Necturus gallbladders to establish the contribution of different proposed apical membrane entry mechanisms to transepithelial salt transport. In 10 mM HCO3- Ringer's, Jv was 13.5 +/- 1.1 microliter X cm-2 X h-1, and was significantly reduced by a low bicarbonate medium and by addition of amiloride (10(-3)M) or SITS (0.5 X 10(-3)M) to the mucosal bathing solution. Bumetanide (10(-5)M) was ineffective. Bilateral Na+ removal abolished Jv. The hypothesis of NaCl cotransport was rejected on the basis of the following results, all obtained during mucosal bathing solution changes: during Na+ removal, aNai fell 4.3 times faster than aCli; during Cl- removal, aCli fell 7.5 times faster than aNai; amiloride (10(-3) M) reduced aNai at a rate of 2.4 +/- 0.3 mM/min, whereas aCli was not changed; bumetanide (10(-5) M) had no significant effects on Jv or aCli. The hypothesis of Na-K-Cl cotransport was rejected for the same reasons; in addition, K+ removal from the mucosal bathing solution (with concomitant Ba2+ addition) did not alter aNai or aCli. The average rate of NaCl entry under normal transporting conditions, estimated from Jv, assuming that the transported fluid is an isosmotic NaCl solution, was 22.5 nmol X cm-2 X min-1. Upon sudden cessation of NaCl entry, assuming no cell volume changes, aNai and aCli should fall at an average rate of 4.8 mM/min. To compare this rate with the rates of Na+ and Cl- entry by ion exchange, the Na+ or Cl- concentration in the mucosal bathing solution was reduced rapidly to levels such that electroneutral cation or anion exchange, respectively, should cease. The rate of Na+ or Cl- entry before this maneuver was estimated from the initial rate of fall of the respective intracellular ionic activity upon the mucosal solution substitution. aNai and aCli decreased at initial rates of 3.7 +/- 0.4 and 5.9 +/- 0.8 mM/min, respectively. The rate of fall of aNai upon reduction of external [Na] was not affected by amiloride (10(-3) M), and the rate of fall of aCli upon reduction of external [Cl] was unchanged by SITS (0.5 X 10(-3) M), which indicates that net cation or anion exchange was, in fact, abolished by the changes in Na+ and Cl- gradients, respectively. I conclude that double exchange (Na+/H+ and Cl-/HCO-3) is the predominant or sole mechanism of apical membrane NaCl entry in this epithelium.  相似文献   

10.
1. Prairie dog gallbladders mounted in a Ussing-type chamber and bathed with symmetrical Ringer's solutions exhibited a transepithelial resistance (Rt) of 51 +/- 5 omega cm2, a lumen negative potential difference (Vms) of 11.5 +/- 0.7 mV and a short-circuit current (Isc) of 6.9 +/- 0.3 microEq/hr/cm2. 2. Radioisotopic ion flux experiments revealed that the basal Isc of 6.9 +/- 0.3 microEq/hr/cm2 was mostly accounted for by net Na+ absorption of 3.2 +/- 0.5 microEq/hr/cm2 and net Cl- secretion of 2.9 +/- 0.3 microEq/hr/cm2. 3. In HCO3- free Ringer's, net Na+ flux was virtually abolished, net Cl- flux decreased by 50% and Isc was reduced by 77%. 4. 10(-3) M mucosal amiloride and DIDS reduced Isc by 28 and 24%, respectively. 5. Mucosal NaCl diffusion potentials indicated that the paracellular pathway was cation selective. 6. Thin section electron micrographs showed a single cell population in this epithelium suggesting that net Na+ absorption and Cl- secretion may emerge from the same cells. 7. We conclude that prairie dog gallbladder epithelium is an electrogenic tissue and, in contrast to gallbladders of most other species, simultaneously but independently absorbs Na+ and secretes Cl-.  相似文献   

11.
Ion transport in the intestine of Gobius niger, a euryhaline teleost, was studied in both isotonic and hypotonic conditions. Isolated tissues, mounted in Ussing chambers and bilaterally perfused with isotonic Ringer solution, developed a serosa negative transepithelial voltage and a short circuit current indicating a net negative current in absorptive direction. Bilateral removal of Cl- and Na+ from the bathing solutions as well as the luminal removal of K+in the presence of Ba2+(10(-3) M) almost abolished both Vt and Isc. Similar results were obtained by adding bumetanide (10(-5)M) to the luminal bath while other inhibitors of Cl- transport mechanisms were ineffective. These observations suggest that salt absorption begins with a coupled entry of Na+, Cl-, and K+ across the apical membrane; a Ba2+inhibitable K+ conductance, demonstrated also by micropuncture experiments, recycles the ion into the lumen. Salt entry into the cell is driven by the operation of the basolateral Na+/K(+)-ATPase since serosal ouabain (10(-4)M) completely abolished both Vt and Isc; this pump also completes the Na(+) absorption. The inhibitory effect of both serosal bumetanide (10(-4)M) and SITS (5 x 10(-4)M) suggests that Cl- would leave the cell via the KCl cotransport, the Cl/HCO3- antiport and/or conductive pathways. Bilateral exposure of tissues to hypotonic media produced a reduction of both the transepithelial voltage and the short circuit current probably due to the activation of homeostatic ionic fluxes involved in cell volume regulation. The results of experiments with both isolated enterocytes and intestine exposed to hypotonic solution suggested that the recovery of cell volume, after the initial cell swelling, involves a parallel opening of K+ and Cl- channels to facilitate net solute and water effluxes from the cell. J. Exp. Zool. 301A:49-62, 2004.  相似文献   

12.
To explain cotransport function, the "alternating access" model requires that conformational changes of the empty transporter allow substrates to bind alternatively on opposite membrane sides. To test this principle for the GAT1 (GABA:Na+:Cl-) cotransporter, we have analyzed how its charge-moving partial reactions depend on substrates on both membrane sides in giant Xenopus oocyte membrane patches. (a) "Slow" charge movements, which require extracellular Na+ and probably reflect occlusion of Na+ by GAT1, were defined in three ways with similar results: by application of the high-affinity GAT1 blocker (NO-711), by application of a high concentration (120 mM) of cytoplasmic Cl-, and by removal of extracellular Na+ via pipette perfusion. (b) Three results indicate that cytoplasmic Cl- and extracellular Na+ bind to the transporter in a mutually exclusive fashion: first, cytoplasmic Cl- (5-140 mM) shifts the voltage dependence of the slow charge movement to more negative potentials, specifically by slowing its "forward" rate (i.e., extracellular Na+ occlusion); second, rapid application of cytoplasmic Cl- induces an outward current transient that requires extracellular Na+, consistent with extracellular Na+ being forced out of its binding site; third, fast charge-moving reactions, which can be monitored as a capacitance, are "immobilized" both by cytoplasmic Cl- binding and by extracellular Na+ occlusion (i.e., by the slow charge movement). (c) In the absence of extracellular Na+, three fast (submillisecond) charge movements have been identified, but no slow components. The addition of cytoplasmic Cl- suppresses two components (tau < 1 ms and 13 micros) and enables a faster component (tau < 1 micros). (d) We failed to identify charge movements of fully loaded GAT1 transporters (i.e., with all substrates on both sides). (e) Under zero-trans conditions, inward (forward) GAT1 current shows pronounced pre-steady state transients, while outward (reverse) GAT1 current does not. (f) Turnover rates for reverse GAT1 transport (33 degrees C), calculated from the ratio of steady state current magnitude to total charge movement magnitude, can exceed 60 s(-1) at positive potentials.  相似文献   

13.
The time-, frequency-, and voltage-dependent blocking actions of several cationic drug molecules on open Na channels were investigated in voltage-clamped, internally perfused squid giant axons. The relative potencies and time courses of block by the agents (pancuronium [PC], octylguanidinium [C8G], QX-314, and 9-aminoacridine [9-AA]) were compared in different intracellular ionic solutions; specifically, the influences of internal Cs, tetramethylammonium (TMA), and Na ions on block were examined. TMA+ was found to inhibit the steady state block of open Na channels by all of the compounds. The time-dependent, inactivation-like decay of Na currents in pronase-treated axons perfused with either PC, 9-AA, or C8G was retarded by internal TMA+. The apparent dissociation constants (at zero voltage) for interaction between PC and 9-AA with their binding sites were increased when TMA+ was substituted for Cs+ in the internal solution. The steepness of the voltage dependence of 9-AA or PC block found with internal Cs+ solutions was greatly reduced by TMA+, resulting in estimates for the fractional electrical distance of the 9-AA binding site of 0.56 and 0.22 in Cs+ and TMA+, respectively. This change may reflect a shift from predominantly 9-AA block in the presence of Cs+ to predominantly TMA+ block. The depth, but not the rate, of frequency-dependent block by QX-314 and 9-AA is reduced by internal TMA+. In addition, recovery from frequency-dependent block is not altered. Elevation of internal Na produces effects on 9-AA block qualitatively similar to those seen with TMA+. The results are consistent with a scheme in which the open channel blocking drugs, TMA (and Na) ions, and the inactivation gate all compete for a site or for access to a site in the channel from the intracellular surface. In addition, TMA ions decrease the apparent blocking rates of other drugs in a manner analogous to their inhibition of the inactivation process. Multiple occupancy of Na channels and mutual exclusion of drug molecules may play a role in the complex gating behaviors seen under these conditions.  相似文献   

14.
The Cl- -current through toad skin epithelium depends on the potential in a way consistent with a potential-controlled Cl- permeability. Computer analysis of the Koefoed-Johnsen Ussing two-membrane model provided with constant membrane permeabilities indicates that the voltage- and time-dependent currents are not caused by a trivial Goldmand-type rectification and ion redistributions following transepithelial potential pertubations. Extended with a dynamic Cl- permeability in the apical membrane according to a Hodgkin-Huxley kinetic scheme, the model predicts voltage clamp data which closely resemble experimental observations. This extension of the classic frog skin model implies that the Cl- permeability is activated by a voltage change caused by the inward Na+ current through the apical membrane.  相似文献   

15.
Codium decorticatum regulates its internal ionic composition and osmotic pressure in response to changes in external salinity. Over a salinity range of 23 to 37% (675 to 1120 mosmol/kg) Codium maintains a constant turgor pressure of 95 mosmol/kg (2.3 atm), observed as a constant difference between internal and external osmotic pressures. The changes in internal osmotic pressure are due to changes in intracellular inorganic ions. At 30 0/00 salinity the major intracellular ions are present in the following concentrations (mmol/kg cell H20): K+, 295; Na+, 255; Cl-, 450. At different salinities intracellular ion concentrations remain in constant proportion to the external ion concentrations, and thus the equilibrium potentials are approximately constant. The potential difference between the vacuole and seawater (-76 mV), whici is predominantly a K+ diffusion potential, is also constant with changing salinity. Comparison of the equilibrium potentials with the vacuole potential suggests that Cl- is actively absorbed and Na+ actively extruded, whereas K+ may be passively distributed between the vacuole and seawater. Turgor pressure does not change with environmental hydrostatic pressure, and increasing the external osmotic pressure with raffinose elicits a response similar to that obtained by increasing the salinity. These two results suggest that the stimulus for turgor regulation is a change in turgor pressure rather than a change in internal hydrostatic pressure or ion concentrations.  相似文献   

16.
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.  相似文献   

17.
An electrophysiologic technique was used to measure changes in cell water volume in response to isosmotic luminal solution ion replacement. Intracellular Cl- activity (aCl-i) was measured and net flux determined from the changes in volume and activity. Reduction of luminal solution [Cl-] from 98 to 10 mM (Cl- replaced with cyclamate) resulted in a large fall in aCl-i with no significant change in cell water volume. Elevation of luminal solution [K+] from 2.5 to 83.5 mM (K+ replaced Na+) caused a small increase in aCl-i with no change in cell water volume. Exposure of the Necturus gallbladder epithelium to agents that increase intracellular cAMP levels (forskolin and/or theophylline) induces an apical membrane electrodiffusive Cl- permeability accompanied by a fall in aCl-i and cell shrinkage. In stimulated tissues, reduction of luminal solution [Cl-] resulted in a large fall in aCl-i and rapid cell shrinkage, whereas elevation of luminal solution [K+] caused a large, rapid cell swelling with no significant change in aCl-i. The changes in cell water volume of stimulated tissues elicited by lowering luminal solution [Cl-] or by elevating luminal solution [K+] were reduced by 60 and 70%, respectively, by addition of tetraethylammonium (TEA+) to the luminal bathing solution. From these results, we conclude that: (a) In control tissues, the fall in aCl-i upon reducing luminal solution [Cl-], without concomitant cell shrinkage, indicates that the Cl- entry mechanism is electroneutral (Cl-/HCO3-) exchange. (b) Also in control tissues, the small increase in aCl-i upon elevating luminal solution [K+] is consistent with the recent demonstration of a basolateral Cl- conductance. (c) The cell shrinkage elicited by elevation of intracellular cAMP levels results from conductive loss of Cl- (and probably K+). (d) Elevation of cAMP inhibits apical membrane Cl-/HCO-3-exchange activity by 70%. (e) The cell shrinkage in response to the reduction of mucosal solution [Cl-] in stimulated tissues results from net K+ and Cl- efflux via parallel electrodiffusive pathways. (f) A major fraction of the K+ flux is via a TEA(+)-sensitive apical membrane K+ channel.  相似文献   

18.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

19.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

20.
The symmetry of osmotic conductivity of the canine tracheal epithelial cells was examined in vitro. When an osmotic load of 100 mosM sucrose was added to the serosal bathing solution, no change in the transepithelial potential difference was observed in 15 tissue preparations. In contrast, when the same osmotic load was added to the mucosal bathing solution, there was a rapid decrease in the transepithelial potential difference of 3.9 +/- 0.5 mV (n = 23); ouabain (10(-4) M) eliminated this change. Tissues that had been exposed to the osmotic load added to either the mucosal or serosal side were compared with the control using light and electron microscopy. When the osmotic load was added to the mucosal fluid, there was no change in the nuclear-to-cytoplasmic area ratio of the cell types examined. However, when the same osmotic load was added to the serosal fluid, a marked increase in the nuclear-to-cytoplasmic area ratio of the ciliated cells was observed. This finding indicated cell shrinkage. Dilution potentials measured by substituting NaCl with mannitol also showed asymmetry. The morphological features are probably caused by differences in the osmotic conductivity (Lp) of the basolateral and apical cell membranes, with the Lp of the apical membrane being less than that of the basolateral membrane. The basis for osmotically induced potentials remained undetermined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号