首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic control of immune reactions has a major role in the development of rheumatic heart disease (RHD) and differs between patients with rheumatic fever (RF). Some authors think the risk of acquiring RHD is associated with the HLA class II DR and DQ loci, but other views exist, due to the various HLA-typing methods and ways of grouping cases. Our goal was to determine the relations between HLA class II alleles and risk of or protection from RF in patients with relatively homogeneous clinical manifestations. A total of 70 RF patients under the age of 18 years were surveyed in Latvia. HLA genotyping of DRB1*01 to DRB1*18 and DQB1*0201-202, *0301-305, *0401-402, *0501-504, and *0601-608 was performed using polymerase chain reaction sequence-specific primers. Data for a control group of 100 healthy individuals typed for HLA by the same method were available from the databank of the Immunology Institute of Latvia. Of the RF patients, 47 had RHD and 8 had Sydenham's chorea. We concluded that HLA class II DRB1*07-DQB1*0401-2 and DRB1*07-DQB1*0302 could be the risk alleles and HLA class II DRB1*06 and DQB1*0602-8, the protective ones. Patients with mitral valve regurgitation more often had DRB1*07 and DQB1*0401-2, and patients with multivalvular lesions more often had DRB1*07 and DQB1*0302. In Sydenham's chorea patients, the DQB1*0401-2 allele was more frequent. Genotyping control showed a high risk of RF and RHD in patients with DRB1*01-DQB1*0301-DRB1*07-DQB1*0302 and DRB1*15-DQB1*0302-DRB1*07-DQB1*0303.  相似文献   

2.
Insulin-dependent diabetes mellitus (IDDM) HLA class II DRB1-DQA1-DQB1 data from four populations (Norwegian, Sardinian, Mexican American, and Taiwanese) have been analyzed to detect the amino acids involved in the disease process. The combination of sites DRB1#67 and 86; DQA1#47; and DQB1#9, 26, 57, and 70 predicts the IDDM component in these four populations, when the results and criteria of the haplotype method for amino acids, developed in the companion paper in this issue of the Journal, are used. The following sites, either individually, or in various combinations, previously have been suggested as IDDM components: DRB1#57, 70, 71, and 86; DQA1#52; and DQB1#13, 45, and 57 (DQB1#13 and 45 correlates 100% with DQB1#9 and 26). We propose that DQA1#47 is a better predictor of IDDM than is the previously suggested DQA1#52, and we add DRB1#67 and DQB1#70 to the HLA DR-DQ IDDM amino acids. We do not claim to have identified all HLA DR-DQ amino acids-or highly correlated sites-involved in IDDM. The frequencies and predisposing/protective effects of the haplotypes defined by these seven sites have been compared, and the effects on IDDM are consistent across the populations. The strongest susceptible effects came from haplotypes DRB1 *0301/DQA1 *0501/ DQB1*0201 and DRB1*0401-5-7-8/DQA1*0301/ DQB1*0302. The number of strong protective haplotypes observed was larger than the number of susceptible ones; some of the predisposing haplotypes were present in only one or two populations. Although the sites under consideration do not necessarily have a functional involvement in IDDM, they should be highly associated with such sites and should prove to be useful in risk assessment.  相似文献   

3.
The aim of this study was to examine frequencies and haplotypic associations of HLA class II alleles in autochthonous population of Gorski kotar (Croatia). HLA-DRB1, -DQA1 and -DQB1 alleles were determined by DNA based PCR typing in 63 unrelated inhabitants from Gorski kotar whose parents and ancestors were born and lived in tested area for at least over four generations. A total of 13 HLA-DRB1, 12 DQA1 and 14 DQB1 alleles were identified. The most frequent HLA class II genes in Gorski kotar population are: HLA-DRB1*13 (af = 0.150), -DRB1*03 (af = 0.142), -DRB1*07 (af = 0.119), and -DRB1*11 (af = 0.119), HLA-DQA1*0501 (af = 0.278), -DQA1*0102 (af = 0.183), -DQA1*0201 (af = 0.127) and HLA-DQB1*0301 (af = 0.157), -DQB1*0201 (af = 0.139), -DQB1*0501 (af = 0.111). We have identified 24 HLA class II three-locus haplotypes. The most common haplotypes in Gorski kotar population are DRB1*03-DQA* 0501-DQB1*0201 (0.120), DRB1*11-DQA1*0501-DQB1*0301 (0.111) and DRB1*07-DQA1*0201-DQB1*0202 (0.094). The allelic frequencies and populations distance dendrogram revealed the closest relationships of Gorski kotar population with Slovenians, Germans, Hungarians and general Croatian population, which is the result of turbulent migrations within this microregion during history.  相似文献   

4.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  相似文献   

5.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

6.
The HLA class II alleles (DRB1, DRB3, DRB5, DQA1, and DQB1) and haplotypic associations were studied in the population of the island of Krk using the PCR-SSOP method and the 12th International Histocompatibility Workshop primers and probes. Allele and haplotypic frequencies were compared with the general Croatian population. Significant differences were observed between the population of the island of Krk and Croatians for: a) three broad specificities at DRB1 locus (DRB1*01, *15, and *07), b) one allele at DRB3 locus (DRB3*0301), c) one allele at DQA1 locus (DQA1*0201), d) one allele at DQB1 locus (DQB1*0303). Four unusual haplotypic associations, which have not yet been described in the Croatian population, DRB1*1301-DQA1*0103-DQB1*0607, DRB1*1302-DQA1*0102-DQB1*0605, DRB1*1305-DQA1*0102-DQB1*0605 and DRB1*1305-DQA1*0103-DQB1*0603 were observed in the population from the island of Krk.  相似文献   

7.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in the Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of the proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of the Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

8.
We have found that the low immune response to streptococcal cell wall Ag (SCW) was inherited as a dominant trait and was linked to HLA, as deduced from family analysis. In the present report, HLA class II alleles of healthy donors were determined by serology and DNA typing to identify the HLA alleles controlling low or high immune responses to SCW. HLA-DR2-DQA1*0102-DQB1*0602(DQw6)-Dw2 haplotype or HLA-DR2-DQA1*0103-DQB1*0601(DQw6)-DW12 haplotype was increased in frequency in the low responders and the frequency of HLA-DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15 haplotype or HLA-DR9-DRw53-DQA1*0301-DQB1*0303(DQw3)-Dw23 haplotype was increased in the high responders to SCW. Homozygotes of either DQA1*0102 or DQA1*0103 exhibited a low responsiveness to SCW and those of DQA1*0301 were high responders. The heterozygotes of DQA1*0102 or 0103 and DQA1*0301 showed a low response to SCW, thereby confirming that the HLA-linked gene controls the low response to SCW, as a dominant trait. Using mouse L cell transfectants expressing a single class II molecule as the APC, we found that DQw6(DQA1*0103 DQB1*0601) from the low responder haplotype (DR2-DQA1*0103-DQB1*0601(DQw6)-Dw12) activated SCW-specific T cell lines whereas DQw4(DQA1*0301 DQB1*0401) from the high responder haplotype (DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15) did not activate T cell lines specific to SCW. However, DR4 and DR2 presented SCW to CD4+ T cells in both the high and low responders to SCW, hence the DR molecule even from the low responder haplotype functions as an restriction molecule in the low responders. Putative mechanisms linked to the association between the existence of DQ-restricted CD4+ T cells specific to SCW, and low responsiveness to SCW are discussed.  相似文献   

9.
The HLA class II region genes DQB1*0602 and DQA1*0102 are currently the best genetic predictors for narcolepsy in humans (1(. The aim of this study was to identify the HLA DQ alleles (DQB1*0602 and DQA1*0102) in Slovene sporadic narcoleptic patients. 11 patients who fulfilled ICSD criteria for narcolepsy entered the study. DRB1*1501 DQB1*0602 was present in all the patients while DQA1*0102 was absent in 2 patients. We propose that DQB1*0602 typing is important in diagnosing narcolepsy in Slovene patients  相似文献   

10.
11.
The DRB1, DRB3, DRB5, DQA1 and DQB1 allele polymorphisms were analysed in 3 western and 3 eastern villages of the island of Hvar using PCR-SSOP method and 12th International Workshop primers and probes. Three DQB1 alleles (*0304, *0305, *0607) detected in the population of the island of Hvar (HP) have not yet been observed in general Croatian population (GCP). Significant differences were observed between two regions of Hvar for: a) DRB1*0701 allele (p < 0.001), b) DQA1*0201 allele (p < 0.01), and c) DRB1*0101-DQA1*0101-DQB1*0501 haplotypic association (p < 0.05). Two unusual haplotypic associations, which have not yet been described in general Croatian population (GCP), DRB1*0101-DQA1*0102-DQB1*0501 and DRB1*1501-DQA1 *0102-DQB1*0604 were observed in the population from the island of Hvar (HP). Measures of genetic kinship and genetic distances revealed isolation and clusterization which coincides with the known ethnohistorical, as well as biological and biocultural data obtained from a series of previous investigations. The five studied village subpopulations formed two clusters (East-West) to which the far eastern village (with the highest rii of 0.0407) joined later, thus indicating possible impact of historical immigrations from the mainland.  相似文献   

12.
The aim of the study was to assess chosen factors of genetic susceptibility to DMT1: DRB1, DQB1, and TNF-alpha polymorphisms-308 (G/A) in children with DMT1 and their up-to-now healthy siblings. Then we tested whether the association between TNF-alpha genes and DMT1 is independent of HLA. 87 diabetic children, their 78 siblings, and 85 persons from healthy control group were followed up. The highest risk of DMT1 was connected with alleles: DRB1*0401 (OR = 3.39; CI: 1.55-7.41), DRB1*0301 (OR = 2.72; CI: 1.48-5.01), DQB1*0201 (OR = 4.04; CI: 2.17-7.52), DQB1*0302 (OR = 5.08; CI: 2.54-10.14), and TNF-alpha-308 A allele (OR = 2.59; CI: 1.23-5.44). Moreover linkage disequilibrium for TNF-alpha-308 A allele with DRB1*0301 and DQB1*0201 was observed in both diabetic children and their siblings. Diabetic children and their siblings present similar genetic risk factors for DMT1. The association between TNF-alpha-308 A allele and DMT1 is dependent of HLA-DRB1 and DQB1 alleles.  相似文献   

13.
No significant differences were reported for the frequency of DR3-DQ2 and DR4-DQ8 haplotypes in a recent study of one of the largest cohorts worldwide of patients with isolated Addison's disease compared to patients with APS II. However, previous studies had suggested that the HLA-DQ genes, especially DQA1*0102, may be a genetic marker for resistance to autoimmune thyroid disease, which is the most frequent disease in APS II or III. Until now, HLA-DQA1 alleles have not been systematically investigated in APS. We determined the HLA-DR and HLA-DQA1 association in 112 unrelated patients with APS II (n = 29), APS III (n = 83) and 184 unrelated patients with single-component diseases without further manifestations of APS: Graves' disease (n = 70), Hashimoto's thyroiditis (n = 53), autoimmune Addison's disease (n = 15), vitiligo (n = 16) and alopecia (n = 30), and 72 healthy controls - German Caucasians - to identify possible predisposing and protective HLA class II alleles in APS. In agreement with previous studies, we detected a significantly higher frequency of DR 3 and/or DR 4 in patients with APS II and III compared to controls. In patients with APS II, we detected a significantly higher frequency of DQA1*0301 and *0501 compared to controls confirming the increased frequency of an extended HLA DRB1-*04-DQA1-*03-DQB-*03 haplotype as previously described. In contrast, only DQA1*0301 was increased in our patients with APS III compared to controls. Moreover, we detected an increased frequency of DQA1*0301 in patients with APS, whereas DQA1*0301 was only significantly elevated in alopecia in patients with single-component diseases without APS. Therefore, our results indicate an association between DQA1*0301 and APS II or III since this allele was otherwise not significantly associated with any of its component diseases except alopecia. Moreover, our data imply that the allele DQA1*0301 is a marker of increased risk for further APS manifestations in patients who suffer from an organ-specific autoimmune disease.  相似文献   

14.
Long terminal repeats (LTRs) are common retrovirus-related sequences spread throughout the human genome. We previously reported the human-specific integration of one LTR (DQLTR3) located 15 kb upstream of HLA DQB1. To elucidate the contribution of retroviral sequences to the variability and phylogenetic background of HLA DQB1 we investigated another LTR (DQLTR13), located 1.3 kb upstream of HLA DQB1, in German families, great apes, and Old World monkeys. Within German families, DQLTR13 presence was strongly linked to HLA DQB1*0302, *0303, and *0402 haplotypes. All other haplotypes had a low frequency or were devoid of DQLTR13. Phylogenetic analysis of DQLTR13 and adjacent nucleotide sequences in humans and non-human primates revealed a high degree of similarity and recent origin of HLA DQB1*0302, *0303, and *0402. Nevertheless, two lineages leading to DQB1*0301 and *0302 were generated by an ancient split of a DQB1*0301, *0302 progenitor. A third lineage consisting of DQB1*05/*06-related sequences may have evolved from the DQB1*0302 lineage, and a DQB1*0201-related sequence shared common ancestry with DQB1*0301. Among the human haplotypes, HLA DQB1*0201 and *0301 are linked to two different DQA1 alleles. Based on the small genetic distance of DQLTR13 as well as the adjacent sequences on these haplotypes, we suggest that a recent recombination is responsible for these associations. In the analysis of nonhuman primate species, we detected DQLTR13 in two lowland gorillas, dating the integration at at least 8 million years ago. We therefore conclude that noncoding sequences up to 1.3 kb upstream of DQB1 provide novel insight into the generation of MHC gene diversity.  相似文献   

15.
Multiple sclerosis (MS) is prototype of inflammatory demyelinating disease of the central nervous system .The etiology of MS remains unclear, but according to current data the disease develops in genetically susceptible individuals and may require additional environmental triggers. The human leukocyte antigen (HLA) class II alleles (DRB1*1501, DQA1*0102, DQB1*0602) may have the strongest genetic effect in MS. In this study, the role of these alleles were investigated in 183 Iranian patients with multiple sclerosis and compared with 100 healthy individuals. HLA typing for DRB1*1501, DQA1*0102, DQB1*0602 was performed by polymerase chain reaction (PCR) amplification with sequence-specific primers (PCR-SSP) method. The results show that, HLA DR B1*1501 was significantly more frequent among MS patients (46% vs. 20%, PV = 0.0006) but DQA1*0102 haplotype was negatively associated with MS (30% vs. 50%, PV = 0.0049) and no significant association was found with DQB1*0602 and MS patients in comparison with control group (24% and 30%, PV = 0.43). No significant correlation was observed among these alleles with sex, type of disease; initial symptoms, expanded disability status scale (EDSS), as well as age at onset and familial MS. This study therefore indicates that there is no association of above HLA haplotypes with clinical presentation, disease duration, and disability in Iranian patients with MS which is in line with other previous studies in different ethnic groups.  相似文献   

16.
We report here our analysis of HLA class II alleles in 180 Caucasian nuclear families with at least two children with insulin-dependent diabetes mellitus (IDDM). DRB1, DQA1, DQB1, and DPB1 genotypes were determined with PCR/sequence-specific oligonucleotide probe typing methods. The data allowed unambiguous determination of four-locus haplotypes in all but three of the families. Consistent with other studies, our data indicate an increase in DR3/DR4, DR3/DR3, and DR4/DR4 genotypes in patients compared to controls. In addition, we found an increase in DR1/DR4, DR1/DR3, and DR4/DR8 genotypes. While the frequency of DQB1*0302 on DR4 haplotypes is dramatically increased in DR3/DR4 patients, DR4 haplotypes in DR1/DR4 patients exhibit frequencies of DQB1*0302 and DQB1*0301 more closely resembling those in control populations. The protective effect of DR2 is evident in this data set and is limited to the common DRB1*1501-DQB1*0602 haplotype. Most DR2+ patients carry the less common DR2 haplotype DRB1*1601-DQB1*0502, which is not decreased in patients relative to controls. DPB1 also appears to play a role in disease susceptibility. DPB1*0301 is increased in patients (P < .001) and may contribute to the disease risk of a number of different DR-DQ haplotypes. DPB1*0101, found almost exclusively on DR3 haplotypes in patients, is slightly increased, and maternal transmissions of DRB1*0301-DPB1*0101 haplotypes to affected children occur twice as frequently as do paternal transmissions. Transmissions of DR3 haplotypes carrying other DPB1 alleles occur at approximately equal maternal and paternal frequencies. The complex, multigenic nature of HLA class II-associated IDDM susceptibility is evident from these data.  相似文献   

17.
Several human genetic variants, HLA antigens and alleles are reportedly linked to post-schistosomal hepatic disorder (PSHD), but the results from these reports are highly inconclusive. In order to estimate overall associations between human genetic variants, HLA antigens, HLA alleles and PSHD, we systematically reviewed and performed a meta-analysis of relevant studies in both post-schistosomal hepatic disorder and post-schistosomal non-hepatic disorder patients. PubMed, Scopus, Google Scholar, The HuGE Published Literature database, Cochrane Library, and manual search of reference lists of articles published before July 2009 were used to retrieve relevant studies. Two reviewers independently selected articles and extracted data on study characteristics and data regarding the association between genetic variants, HLA antigens, HLA alleles and PSHD in the form of 2×2 tables. A meta-analysis using fixed-effects or random-effects models to pooled odds ratios (OR) with corresponding 95% confidence intervals were calculated only if more than one study had investigated particular variation. We found 17 articles that met our eligibility criteria. Schistosoma mansoni and Schistosoma japonicum were reported as the species causing PSHD. Since human genetic variants were only investigated in one study, these markers were not assessed by meta-analysis. Thus, only HLA-genes (a total of 66 HLA markers) were conducted in the meta-analysis. Our meta-analysis showed that human leucocyte antigens HLA-DQB1*0201 (OR=2.64, P=0.018), DQB1*0303 (OR=1.93, P=0.008), and DRB1*0901 (OR=2.14, P=0.002) alleles and HLA-A1 (OR=5.10, P=0.001), A2 (OR=2.17, P=0.005), B5 (OR=4.63, P=0.001), B8 (OR=2.99, P=0.02), and B12 (OR=5.49, P=0.005) serotypes enhanced susceptibility to PSHD, whereas HLA-DQA1*0501 (OR=0.29, P≤0.001) and DQB1*0301 (OR=0.58, P=0.007) were protective factors against the disease. We further suggested that the DRB1*0901-DQB1*0201, DRB1*0901-DQB1*0303 and A1-B8 haplotypes enhanced susceptibility to PSHD, whereas DQA1*0501-DQB1*0301 linkage decreased the risk of PSHD. The result improved our understanding of the association between the HLA loci and PSHD with regard to pathogenic or protective T-cells and provided novel evidence that HLA alleles may influence disease severity.  相似文献   

18.
HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine.  相似文献   

19.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

20.
The association between rheumatoid arthritis (RA) and HLA DRB1 alleles may arise through linkage disequilibrium with a disease locus or the direct involvement of HLA alleles in RA. In support of the latter possibility, the shared-epitope hypothesis has been postulated, stating that conformationally similar DR beta chains encoded by several DRB1 alleles confer disease susceptibility. To examine these alternative hypotheses of marker-disease association and to investigate gender differences in RA susceptibility, we analyzed the distributions of PCR-based DRB1 genotypes of 309 Caucasian RA patients and 283 Caucasian controls. Initially, the marker-association-segregation chi 2 method was used to evaluate evidence for linkage disequilibrium and the direct involvement of markers DR4 Dw4, DR4 Dw14, and DR1 in RA susceptibility. Additional shared-epitope models that grouped DRB1 alleles into five classes (*0401, *0404/*0102, *0405/*0408/*0101, *1001, and all others) and postulated relationships between genotypes and RA susceptibility were also fitted to observed genotypic distributions by the method of minimal chi 2. For females, a linkage-disequilibrium model provided a good fit to the data, as did a shared-epitope model with RA most penetrant among individuals with the *0401,*0401 genotype. For males, the best model indicated highest RA penetrance among shared-epitope compound heterozygotes. Clinically, male RA patients had more subcutaneous nodules and greater use of slowly acting antirheumatic drugs, while female RA patients had earlier disease onset. This study therefore suggests that sex-related factors influence the RA penetrance associated with DRB1 shared-epitope genotypes and that DRB1 effects on RA prognosis and pathogenesis should be considered separately for men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号