首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnosine (β-alanyl-l-histidine) is a naturally occurring dipeptide that shows antineoplastic effects in cell culture as well as in animal experiments. Since its mode of action and the targets at the molecular level have not yet been elucidated, we performed qRT-PCR experiments with RNA isolated from glioblastoma cell lines treated with carnosine, β-alanine, l-alanine, l-histidine and the dipeptide l-alanine-l-histidine. The experiments identified a strong induction of expression of the gene encoding pyruvate dehydrogenase 4 (PDK4) under the influence of carnosine and l-histidine, but not by the other substances employed. In addition, inhibition of cell viability was only detected in cells treated with carnosine and l-histidine, with the latter showing a significantly stronger effect than carnosine. Since the tumor cells expressed the tissue form of carnosinase (CN2) but almost no serum carnosinase (CN1), we conclude that cleavage by CN2 is a prerequisite for the antineoplastic effect of carnosine. In addition, enhanced expression of PDK4 under the influence of carnosine/l-histidine opens a new perspective for the interpretation of the ergogenic potential of dietary β-alanine supplementation and adds a new contribution to a growing body of evidence that single amino acids can regulate key metabolic pathways important in health and disease.  相似文献   

2.
?-Poly-l-lysine (?-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of l-lysine, which is used as a safe food preservative. In this study, the effects of l-lysine and its isomer, d-lysine, on ?-PL biosynthesis and their metabolites by the ?-PL-producing strain Streptomyces ahygroscopicus GIM8 were determined. The results indicated that l-lysine added into the fermentation medium in the production phase mainly served as a precursor for ?-PL biosynthesis during the flask culture phase, leading to greater ?-PL production. At an optimum level of 3 mM l-lysine, a ?-PL yield of 1.16 g/L was attained, with a 41.4% increment relative to the control of 0.78 g/L. Regarding d-lysine, the production of ?-PL increased by increasing its concentrations up to 6 mM in the initial fermentation medium. Interestingly, ?-PL production (1.20 g/L) with the addition of 3 mM d-lysine into the initial fermentation medium in flasks was higher than that of the initial addition of 3 mM L-lysine (1.06 g/L). The mechanism by which d-lysine improves ?-PL biosynthesis involves its utilization that leads to greater biomass. After S. ahygroscopicus GIM8 was cultivated in the defined medium with L-lysine, several key metabolites, including 5-aminovalerate, pipecolate, and l-2-aminoadipate formed in the cells, whereas only l-2-aminoadipate was observed after d-lysine metabolism. This result indicates that l-lysine and d-lysine undergo different metabolic pathways in the cells. Undoubtedly, the results of this study are expected to aid the understanding of ?-PL biosynthesis and serve as reference for the formulation of an alternative approach to improve ?-PL productivity using l-lysine as an additional substrate in the fermentation medium.  相似文献   

3.
l-dopa-l-Tyr was synthesized by Fmoc solid-phase peptide synthesis, purified by reversed-phase HPLC and characterized by using 1H, 13C NMR and ESI–MS analyses. The interaction of l-dopa-l-Tyr and l-dopa with ctDNA has been investigated respectively by UV–vis absorption and fluorescence spectroscopy. The results showed that both l-dopa and l-dopa-l-Tyr interacted with ctDNA through intercalative mode and l-dopa-l-Tyr showed a higher affinity for DNA. Meanwhile, compared with the free l-dopa, gel electrophoresis assay also demonstrated that l-dopa-l-Tyr interacted with DNA by intercalation.  相似文献   

4.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

5.
In the present work, Bacillus subtilis was engineered to produce l-malate. Initially, the study revealed that the slight fumarase activity under anaerobic conditions is extremely favourable for l-malate one-step fermentation accumulation. Subsequently, an efficient heterologous biosynthesis pathway formed by Escherichia coli phosphoenolpyruvate carboxylase and Saccharomyces cerevisiae malate dehydrogenase was introduced into B. subtilis, which led to 6.04?±?0.19?mM l-malate production. Finally, the l-malate production was increased 1.5-fold to 9.18?±?0.22?mM by the deletion of lactate dehydrogenase. Under two-stage fermentation conditions, the engineered B. subtilis produced up to 15.65?±?0.13?mM l-malate, which was 86.3?% higher than that under anaerobic fermentation conditions. Though the l-malate production by the recombinant was low, this is the first attempt to produce l-malate in engineered B. subtilis and paves the way for further improving l-malate production in B. subtilis.  相似文献   

6.
3-O-β-d-Xylopyranosyl-l-serine (xylosylserine) was synthesized by the following three-step procedure: 1) 2,3,4-tri-O-benzoyl-α-d-xylopyranosyl bromide (benzobromoxylose) was condensed withN-carbobenzoxy-l-serine benzyl ester using the silver triflate-collidine complex as promoter; 2) theN-carbobenzoxy and benzyl ester groups in the resultant glycoside were cleaved by transfer hydrogenation with palladium black as catalyst and ammonium formate as hydrogen donor; and 3) the benzoyl groups were removed with methanolic ammonia. Xylosylserine was obtained in an overall yield of 70%. O-β-d-Galactopyranosyl-(1-4)-O-β-d-xylopyranosyl-(1-3)-l-serine (galactosylxylosylserine) was also synthesized by this methodology and was characterized by 2-dimensional (2D) NMR spectroscopy techniques. The two serine glycosides (xylosylserine and galactosylxylosylserine) were used in detection and partial purification of galactosyltransferase I (UDP-d-galactose:d-xylose galactosyltransferase) from adult rat liver.  相似文献   

7.
8.
Natural l-homocysteine and l,l-cystathionine, along with a series of unnatural analogues, have been prepared from l-aspartic and l-glutamic acid. Manipulation of the protected derivatives provided ω-iodoamino acids, which were used in thioalkylation reactions of sulfur nucleophiles, such as the ester of l-cysteine and potassium thioacetate.  相似文献   

9.
Intracerebroventricular (i.c.v.) administration of l-aspartate (l-Asp) attenuates stress responses in neonatal chicks, but the mechanism has not been clarified. In the present study, three behavioral experiments were carried out under socially isolated stressful conditions exacerbated by the use of corticotrophin-releasing factor (CRF). In Experiment 1, i.c.v. injection of l-Asp attenuated behavioral stress responses (distress vocalization and active wakefulness) in a dose-dependent manner. Furthermore, l-Asp increased time spent standing/sitting motionless with eyes open and sitting motionless with head dropped (sleeping posture) in comparison with the group receiving CRF alone. In Experiment 2, i.c.v. injection of d-Asp dose-dependently decreased the number of distress vocalizations and the amount of time spent in active wakefulness. d-Asp increased the time spent standing/sitting motionless with eyes open compared with the group receiving CRF alone. In Experiment 3, we directly compared the effect of l-Asp with that of d-Asp. Both l- and d-Asp induced sedative effects under an acutely stressful condition. However, l-Asp, but not d-Asp, increased the time spent in a sleeping posture. These results indicate that both l- and d-Asp, when present in the brain, could induce a sedative effect, while the mechanism for hypnosis in neonatal chicks may be different for l-Asp in comparison with d-Asp.  相似文献   

10.
Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.  相似文献   

11.
γ-Glutamylamine cyclotransferase (gGACT) catalyzes the intramolecular cyclization of a variety of l-γ-glutamylamines producing 5-oxo-l-proline and free amines. Its substrate specificity implicates it in the downstream metabolism of transglutaminase products, and is distinct from that of γ-glutamyl cyclotransferase which acts on l-γ-glutamyl amino acids. To elucidate the mechanism by which gGACT distinguishes between l-γ-glutamylamine and amino acid substrates, the specificity of the rabbit kidney enzyme for the amide region of substrates was probed through the kinetic analysis of a series of l-γ-glutamylamines. The isodipeptide N ?-(l-γ-glutamyl)-l-lysine 1 was used as a reference. The kinetic constants of the l-γ-glutamyl derivative of n-butylamine 7, were nearly identical to those of 1. Introduction of a methyl or carboxylate group on the carbon adjacent to the side-chain amide nitrogen in l-γ-glutamylamine substrates resulted in a dramatic decrease in substrate properties for gGACT thus providing an explanation of why gGACT does not act on l-γ-glutamyl amino acids except for l-γ-glutamylglycine. Placement of substituents on carbons further removed from the side-chain amide nitrogen in l-γ-glutamylamines restored activity for gGACT, and l-γ-glutamylneohexylamine 19 had a higher specificity constant (k cat /K m) than 1. gGACT did not exhibit any stereospecificity in the amide region of l-γ-glutamylamine substrates. In addition, analogues (2630) with heteroatom substitutions for the γ methylene position of the l-γ-glutamyl moiety were examined. Several thiocarbamoyl derivatives of l-cysteine (2830) were excellent substrates for gGACT.  相似文献   

12.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

13.
Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a d-diastereomer of Pandinin 2, d-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of l- and d-Pin2 were to some extent similar, an important reduction in d-Pin2 hemolytic activity (30–40 %) was achieved compared to that of l-Pin2 over human erythrocytes. Furthermore, d-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of l-Pin2. Nevertheless, the antimicrobial activity of d-Pin2 was equally effective as that of l-Pin2 in microdilution assays. Yet, when d- and l-Pin2 were incubated with trypsin, elastase and whole human serum, only d-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, l- and d-Pin2 maintained similar peptide stability. Finally, when l- and d-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, d-Pin2 kept its antibiotic activity while l-Pin2 was not effective.  相似文献   

14.
l-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. l-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an l-arginine impaired levels and/or to its metabolites: in particular various l-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. l-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating l-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of l-arg metabolites in cardiovascular disease and that l-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains l-arginine metabolites and l-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.  相似文献   

15.
l-Arabinose isomerase (l-AI) catalyzes the isomerization of l-arabinose to l-ribulose and d-galactose to d-tagatose. Most reported l-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial d-tagatose production. Lactobacillus fermentum l-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for d-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, d-galactose was isomerized into d-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other l-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of l-AIs that can be modified for desired optimum pH and better pH stability, which are useful in d-tagatose bioproduction.  相似文献   

16.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

17.
A linear sweep voltammetric method is used for direct simultaneous determination of l-cysteine and l-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for l-cysteine (0.62 V) and l-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0–450 and 5.0–700 μM and detection limits were estimated to be 0.298 and 4.258 μM for l-cysteine and l-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of l-cysteine and l-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.  相似文献   

18.
The cis-epoxysuccinate hydrolases (CESHs), members of epoxide hydrolase, catalyze cis-epoxysuccinic acid hydrolysis to form d(?)-tartaric acid or l(+)-tartaric acid which are important chemicals with broad scientific and industrial applications. Two types of CESHs (CESH[d] and CESH[l], producing d(?)- and l(+)-tartaric acids, respectively) have been reported with low yield and complicated purification procedure in previous studies. In this paper, the two CESHs were overexpressed in Escherichia coli using codon-optimized genes. High protein yields by one-step purifications were obtained for both recombinant enzymes. The optimal pH and temperature were measured for both recombinant CESHs, and the properties of recombinant enzymes were similar to native enzymes. Kinetics parameters measured by Lineweaver?CBurk plot indicates both enzymes exhibited similar affinity to cis-epoxysuccinic acid, but CESH[l] showed much higher catalytic efficiency than CESH[d], suggesting that the two CESHs have different catalytic mechanisms. The structures of both CESHs constructed by homology modeling indicated that CESH[l] and CESH[d] have different structural folds and potential active site residues. CESH[l] adopted a typical ??/??-hydrolase fold with a cap domain and a core domain, whereas CESH[d] possessed a unique TIM barrel fold composed of 8 ??-helices and 8 ??-strands, and 2 extra short ??-helices exist on the top and bottom of the barrel, respectively. A divalent metal ion, preferred to be zinc, was found in CESH[d], and the ion was proved to be crucial to the enzymatic activity. These results provide structural insight into the different catalytic mechanisms of the two CESHs.  相似文献   

19.
l-Lactic acid production by Lactobacillus casei was used as a model to study the mechanism of substrate inhibition and the strategy for enhancing l-lactic acid production. It was found that the concentration of cell growth and l-lactate decreased with the increase of glucose concentration and fermentation temperature. To enhance the osmotic stress resistance of the strain at high temperature, a mutant G-03 was screened and selected with 360?g/L glucose at 45°C as the selective criterion. To further increase the cell growth for lactic acid production, 3?g/L of biotin was supplemented to the medium. As a result, l-lactate concentration by the mutant G-03 reached 198.2?g/L (productivity of 5.5?g?L?1?h?1) at 41°C in a 7-L fermentor with 210?g/L glucose as carbon source. l-Lactate concentration and productivity of mutant G-03 were 115.2% and 97.8% higher than those of the parent strain, respectively. The strategy for enhancing l-lactic acid production by increasing osmotic stress resistance at high temperature may provide an alternative approach to enhance organic acid production with other strains.  相似文献   

20.
l-Carnitine is a naturally occurring substance required in mammalian energy metabolism that functions by facilitating long-chain fatty acid entry into cellular mitochondria, thereby delivering substrate for oxidation and subsequent energy production. It has been purposed that l-carnitine may improve and preserve cognitive performance, and may lead to better cognitive aging through the life span, and several controlled human clinical trials with l-carnitine support the hypothesis that this substance has the ability to improve cognitive function. We further hypothesized that, since l-carnitine is an important co-factor of mammalian mitochondrial energy metabolism, acute administration of l-carnitine to human tissue culture cells should result in detectable increases in mitochondrial function. Cultures of SH-SY-5Y human neuroblastoma and 1321N1 human astrocytoma cells grown in 96-well cell culture plates were acutely administered l-carnitine hydrochloride, and then, mitochondrial function was assayed using the colorimetric 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt cell assay kit in a VERSAmax tunable microplate reader. Significant increases in mitochondrial function were observed when human neuroblastoma or human astrocytoma cells were exposed to 100 nM (20 μg l-carnitine hydrochloride/L) to 100 μM (20 mg l-carnitine hydrochloride/L) concentrations of l-carnitine hydrochloride in comparison to unexposed cells, whereas no significant positive effects were observed at lower or higher concentrations of l-carnitine hydrochloride. The results of the present study provide insights for how l-carnitine therapy may significantly improve human neuronal function, but we recommend that future studies further explore different derivatives of l-carnitine compounds in different in vitro cell-based systems using different markers of mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号