首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Biosynthetic pathways to bile acids have been studied in HepG2 cells, a well-differentiated human hepatoblastoma cell line. Cholesterol metabolites, in total 29, were isolated from culture media and cells by liquid-solid extraction and anion-exchange chromatography and were identified by gas-liquid chromatography-mass spectrometry. The production rates/concentrations of cholic acid (CA) and chenodeoxycholic acid (CDCA) in media from control cells were 71 and 74 ng/10(7) cells/h, respectively. Major bile acid precursors were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA), 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid, 7 alpha-hydroxy-3-oxo-4-cholenoic acid, and 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, their concentrations being 60, 30, 23, and 10 ng/10(7) cells/h, respectively. These and nine other isolated intermediates formed essentially complete metabolic sequences from cholesterol to CA and CDCA. The remaining steroids were metabolites of the intermediates or autooxidation products of cholesterol. These findings and the observed effect of dexamethasone on production rates suggest that in HepG2 cells the major biosynthetic pathways to primary bile acids start with 7 alpha-hydroxylation of cholesterol and oxidation to 7 alpha-hydroxy-4-cholesten-3-one followed by hydroxylation at either the 26 or 12 alpha position. CDCA is formed by the sequence of 26-hydroxylation, oxidation, and degradation of the side chain and A-ring reduction. CA is formed by the sequence of 12 alpha-hydroxylation, 26-hydroxylation, oxidation, and degradation of the side chain and reduction of the A-ring. An alternative pathway to CA included A-ring reduction of the intermediate 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid to form THCA prior to side chain cleavage. These pathways are not limited to HepG2 cells but may also be important in humans.  相似文献   

2.
The formation of isocholic acid from 7 alpha, 12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid by human liver preparations was examined in vitro. Liver preparations were incubated with 7 alpha, 12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid at pH 7.4 in a phosphate buffer containing NADPH or NADH. The products formed were analyzed by gas chromatography and gas chromatography/mass spectrometry. Results showed that 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid was reduced mainly to isocholic acid and to cholic acid in a smaller amount in the presence of NADPH, while it was reduced only to cholic acid in the presence of NADH. The reducing enzyme participating in the formation of isocholic acid was localized largely in the cytosol and had more specificity to the unconjugated form as substrate than to the conjugated forms. 3-Keto bile acid analogues, 3-keto-5 beta-cholanoic and 7 alpha-hydroxy-3-keto-5 beta-cholanoic acids were not reduced to the corresponding iso-bile acids by the cytosol in the same conditions used in the isocholic acid formation and the activity of the enzyme catalyzing the reduction of 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid to isocholic acid was not inhibited by the addition of 3-keto-5 beta-cholanoic acid or 7 alpha-hydroxy-3-keto-5 beta-cholanoic acid to the reaction mixture. Furthermore, on column chromatography of Affi-Gel Blue, the peak of the enzyme catalyzing the reduction of 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid to isocholic acid was clearly distinguished from that of the enzyme catalyzing the reduction of 3-keto-5 beta-cholanoic acid to isolithocholic acid and that of alcohol dehydrogenase. These results indicate that this enzyme catalyzing the reduction of 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid to isocholic acid is different from the enzyme(s) catalyzing the reduction 3-keto-5 beta-cholanoic and 7 alpha-hydroxy-3-keto-5 beta-cholanoic acids to the corresponding iso-bile acids and from alcohol dehydrogenase, and has a stereospecific character for 7 alpha,12 alpha-dihydroxy-3-keto-5 beta-cholanoic acid.  相似文献   

3.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

4.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

5.
We have previously demonstrated that the rat brain contains three unconjugated bile acids, and chenodeoxycholic acid (CDCA) is the most abundantly present in a tight protein binding form. The ratio of CDCA to the other acids in rat brain tissue was significantly higher than the ratio in the peripheral blood, indicating a contribution from either a specific uptake mechanism or a biosynthetic pathway for CDCA in rat brain. In this study, we have demonstrated the existence of an enzymatic activity that converts 3beta-hydroxy-5-cholenoic acid into CDCA in rat brain tissue. To distinguish marked compounds from endogenous related compounds, 18O-labeled 3beta-hydroxy-5-cholenoic acid, 3beta,7alpha-dihydroxy-5-cholenoic acid, and 7alpha-hydroxy-3-oxo-4-cholenoic acid were synthesized as substrates for in vitro incubation studies. The results clearly suggest that 3beta-hydroxy-5-cholenoic acid was converted to 3beta,7alpha-dihydroxy-5-cholenoic acid by microsomal enzymes. The 7alpha-hydroxy-3-oxo-4-cholenoic acid was produced from 3beta,7alpha-dihydroxy-5-cholenoic acid by the action of microsomal enzymes, and Delta4-3-oxo acid was converted to CDCA by cytosolic enzymes. These findings indicate the presence of an enzymatic activity that converts 3beta-hydroxy-5-cholenoic acid into CDCA in rat brain tissue. Furthermore, this synthetic pathway for CDCA may relate to the function of 24S-hydroxycholesterol, which plays an important role in cholesterol homeostasis in the body.  相似文献   

6.
Freshly isolated cultures (2060) of human intestinal bacteria of the predominant flora, among them 1029 strains of saccharolytic Bacteroides species, were tested for cholic acid transformation. Eight Bacteroides strains reduced cholate to chenodeoxycholate, while 73 strains dehydroxylated at C7, producing deoxycholate. Concurrent oxidation of hydroxyl groups, mainly at C7, was seen with many strains. No strain was able to dehydroxylate simultaneously at C7 and C12. One isolate, identified as a mixed culture of Bacteroides fragilis and B. uniformis, epimerized cholic acid at C5 and simultaneously epimerized, oxidized and dehydroxylated at C7. The following transformation products were identified: 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic acid (ursocholic acid), 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic acid and a 3 alpha,12 alpha-dihydroxy-5 alpha-cholenoic acid. Dehydroxylating and epimerizing abilities were detected when fresh isolates were tested first for cholate transformation. They were no longer recognizable after some serial transfers. Dehydroxylation at C12 of cholate could not be demonstrated with mixed fecal cultures. The possible intermediate, however, 3 alpha,7 alpha-dihydroxy-5 beta-chol-11-enoate, was abundantly hydrogenated by stool suspensions.  相似文献   

7.
The bile acid in gallbladder bile of rabbits fed a normal diet or one containing 2% (w/w) cholesterol have been determined by gas chromatography-mass spectrometry. The predominant bile acids in normally fed rabbits were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oic acid (cholic acid), 3 alpha, 12 alpha-dihydroxy-5 alpha-cholan-24-oic acid (allodeoxycholic acid) and 3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) with very much smaller amounts of 3 alpha-hydroxy-5 beta-cholan-24-oic acid (lithocholic acid) and 3 alpha, 12 beta-dihydroxy-5 beta-cholan-24-oic acid. In the cholesterol-fed animals the lithocholate became a predominant bile acid. Sulphated bile acids accounted for less than 1% of the total bile acids. It is proposed that lithocholic acid may be a primary bile acid in the cholesterol-fed rabbit, formed by an alternative pathway of biosynthesis involving hepatic mitochondria.  相似文献   

8.
The hydroxylation of lithocholic acid (3 alpha-hydroxy-5 beta-cholanoic acid) by adult male Sprague-Dawley rat liver microsomes supplemented with NADPH was studied. Metabolites were separated by a combination of thin-layer chromatography and high pressure liquid chromatography, both with and without prior methylation and acetylation of the samples. The resulting products were characterized by thin-layer, gas-liquid, and high pressure liquid chromatography by comparison with authentic bile acid standards; final structure determination was by proton nuclear magnetic resonance spectroscopy and by mass spectrometry. The following reaction products were found: 3 alpha, 6 beta-dihydroxy-5 beta-cholanoic acid (80% of total metabolites) and 3 alpha, 6 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 7 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 6 beta,7 beta-trihydroxy-5 beta-cholanoic, and 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acids (less than or equal to 5% each). In addition, one unidentified trihydroxylic bile acid and several minor compounds were present. It is concluded that four different hydroxylation reactions of lithocholic acid, namely the predominant 6 beta as well as the minor 6 alpha, 7 alpha, and 7 beta hydroxylations, are catalyzed by rat hepatic microsomes; 7 beta-hydroxylation may occur only with dihydroxylated bile acids but not with lithocholate itself. The presence of the 6-oxo bile acid can be explained either by direct oxidation of a hydroxyl group by cytochrome P-450, or by the action of microsomal dehydrogenase(s) which could also catalyze the epimerization of hydroxyl groups via their oxidation. The results form the basis of a proposed scheme of the oxidative metabolism of lithocholic acid in rat liver microsomes.  相似文献   

9.
This report describes the chemical synthesis of six new bile acid analogs, namely, 3 alpha,7 alpha,12 alpha-trihydroxy-7 beta-methyl-5 beta-cholanoic acid (7 beta-methyl-cholic acid), 3 alpha,7 beta,12 alpha-trihydroxy-7 alpha-methyl-5 beta-cholanoic acid (7 alpha-methyl-ursocholic acid), 3 alpha,12 alpha-dihydroxy-7 xi-methyl-5 beta-cholanoic acid (7 xi-methyl-deoxycholic acid), 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-7-en-24-oic acid, 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-6-en-24-oic acid, and 3 alpha,12 alpha-dihydroxy-7-methylene-5 beta-cholan-24-oic acid. The carboxyl group of the starting material 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholanoic acid was protected by conversion to its oxazoline derivative. A Grignard reaction of the bile acid oxazoline with CH3MgI followed by acid hydrolysis gave two epimeric trihydroxy-7-methyl-cholanoic acids and three dehydration products. The latter were purified by silica gel column chromatography and silica gel-AgNO3 column chromatography of their methyl ester derivatives. Catalytic hydrogenation of 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-6-en-24-oic acid and 3 alpha,12 alpha-dihydroxy-7-methylene-5 beta-cholan-24-oic acid gave 3 alpha,12 alpha-dihydroxy-7 xi-methyl-5 beta-cholanoic acid. The configuration of the 7-methyl groups and the position of the double bonds were assigned by proton nuclear magnetic resonance spectroscopy and the chromatographic and mass spectrometric properties of the new compounds. These compounds were synthesized for the purpose of exploring new and potentially more effective cholelitholytic agents. The hydrophilic bile acids 7 beta-methyl-cholic acid and 7 alpha-methyl-ursocholic acid are of particular interest because they should be resistant to bacterial 7-dehydroxylation.  相似文献   

10.
Unusual bile acids in umbilical cord blood and amniotic fluid of term newborns and in sera and urine from adult patients with cholestatic liver diseases were analyzed by use of gas-liquid chromatography-mass spectrometry. These bile acids were compared in order to elucidate possible similarities of bile acid metabolism between fetal and cholestatic liver. In both umbilical cord blood and amniotic fluid, 14 unusual bile acids were found in addition to normal bile acids (cholic, chenodeoxycholic, deoxycholic, and lithocholic acids), and 15, excluding ursodeoxycholic acid, were found in sera and urine from patients with cholestatic liver diseases. Of the unusual bile acids detected, 12 were common to both samples. Six unusual bile acids, 3 beta-hydroxy- and 3 beta,12 alpha-dihydroxy-5-cholenoic acids, 3 alpha,6 alpha,7 alpha-trihydroxy-5 beta-cholanoic acid, 1 beta,3 alpha,12 alpha-trihydroxy-1 beta,3 alpha,7 alpha-trihydroxy-, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholanoic acids were more abundant than others. They could be classified into three groups, i.e., unsaturated, 6-hydroxylated, and 1 beta-hydroxylated bile acids. 1 beta-Hydroxylated bile acids, which were not found in serum specimens, were detected in sera from umbilical cord blood and from patients with cholestatic liver diseases. The presence of these unusual bile acids suggested similarities between the altered metabolic states of the two groups examined.  相似文献   

11.
Biliary bile acids of Alligator mississippiensis were analyzed by gas-liquid chromatography-mass spectrometry after fractionation by silica gel column chromatography. It was shown that the alligator bile contained 12 C27 bile acids and 8 C24 bile acids. In addition to the C27 bile acids, such as 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestanoic acid, 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid, 3 alpha,12 alpha-dihydroxy-5 beta-cholestanoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, and 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholestanoic acid, identified previously in the bile of A. mississippiensis, 3 alpha,7 beta-dihydroxy-5 beta-cholestanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholestanoic acid, 7 beta,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,26-tetrahydroxy-5 beta-cholestanoic acid, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholestanoic acid were newly identified. And in addition to the C24 bile acids, such as chenodeoxycholic acid, ursodeoxycholic acid, cholic acid, and allocholic acid, identified previously, deoxycholic acid, 3 alpha,7 alpha-dihydroxy-5 beta-chol-22-enoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-chol-22-enoic acid, and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-chol-22-enoic acid were newly identified.  相似文献   

12.
Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7alpha/beta-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-Delta4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported that the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce alpha/beta-unsaturated carbonyl compounds. The baiH gene product was expressed in Escherichia coli, purified and discovered to be a stereo-specific NAD(H)-dependent 7beta-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-Delta4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7alpha-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase.  相似文献   

13.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

14.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

15.
The microbial catabolism of deoxycholic acid by a Pseudomonas species was studied, and three acidic products were isolated as their methyl esters. Evidence is presented that the compounds are methyl 3 alpha,12 alpha-dihydroxy-23,24-dinor-5 beta-cholan-22-oate, methyl 12 alpha-hydroxy-3-oxo-5 beta-cholan-24-oate and methyl 12 alpha-hydroxy-3-oxo-23,24-dinor-5 beta-cholan-22-oate.  相似文献   

16.
Regioselectivity in the anodic electrochemical oxidation of cholic acid with different anodes is described. The oxidation with PbO(2) anode affords the dehydrocholic acid in quantitative yield after 22 h. 3alpha,12alpha-Dihydroxy-7-oxo-5beta-cholan-24-oic acid (59%) and 3alpha-hydroxy-7,12-dioxo-5beta-cholan-24-oic acid (51%) are obtained stopping the reaction at lower time. The rate of the OH-oxidation is C7 > C12 > C3. The electro-oxidation with platinum foil anode gives selectively the 7-ketocholic acid in 40% yield. On the other hand, the graphite plate anode, varying the reaction conditions, produces selectively the dehydrocholic acid in quantitative yield or the 3alpha,12alpha-dihydroxy-7-oxo-5beta-cholan-24-oic acid (96%) while the 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholan-24-oic acid (34%) is obtained together with the other oxo acids.  相似文献   

17.
A reductase catalyzing the reduction of the 3-ketone group of 7 alpha,12 alpha-dihydroxy-5 beta-cholestan-3-one and 7 alpha-hydroxy-5 beta-cholestan-3-one, which are the intermediates in the conversion of cholesterol to cholic acid and chenodeoxycholic acid, respectively, into the 3 alpha-hydroxyl group, was purified about 250-fold as judged by the activity from the 100,000 X g supernatant of rat liver homogenate. The purified enzyme was electrophoretically homogeneous, and its molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretography was 32,000. The absorption spectrum of the purified enzyme showed only a peak at 280 nm due to aromatic amino acids, precluding the presence of a chromophoric prosthetic group in the molecule. The enzyme showed activity toward a variety of substrates, including 3-oxo-5 beta-cholanoic acid, androsterone, 9,10-phenanthrenquinone, p-nitrobenzaldehyde, but not toward glucuronic acid, DL-glyceraldehyde, and glycolaldehyde. The optimal pH for the reduction of 7 alpha-hydroxy-5 beta-cholestan-3-one was 7.4, and the cofactor required was either NADPH or NADH, though the former gave the higher activity. Judging from the chromatography behavior as well as substrate specificity, the enzyme was identified as 3 alpha-hydroxysteroid dehydrogenase (3 alpha-hydroxysteroid:NAD(P)+ oxidoreductase, EC 1.1.1.50).  相似文献   

18.
Two new 6-hydroxylated bile acids, 3 beta, 6 alpha, 12 alpha- and 3 beta, 6 beta, 12 alpha-trihydroxy-5 beta-cholanoic acids, were synthesized from deoxycholic acid. In addition, their C-3 epimers, 3 alpha, 6 alpha, 12 alpha- and 3 alpha, 6 beta, 12 alpha-trihydroxy acids, were prepared by a new route. The principal reactions used were 1) 6 beta-hydroxylation of 3-methoxy-3,5-dienes with m-chloroperbenzoic acid in aqueous dioxane; 2) catalytic hydrogenation of the resulting 6 beta-hydroxy-3-oxo-4-enes to the 6 beta-hydroxy-3-oxo-5 beta compounds with palladium on calcium carbonate catalyst in ethanol; and 3) stereoselective reduction of appropriate 3-oxo derivatives with potassium tri-sec-butylborohydride and tert-butylamine-borane complex. The thin-layer chromatographic, gas-liquid chromatographic, and high performance liquid chromatographic mobilities, and 1H- and 13C-nuclear magnetic resonance spectroscopic data of the four stereoisomers are presented. With this work all the 6-hydroxylated derivatives of lithocholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and cholic acids in the 5 beta series are now known and have been synthesized.  相似文献   

19.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

20.
Deuterium transfer from [1,1-2-H]ethanol (95 atoms % excess) to reducible substrates was studied in the isolated perfused rat liver. The dueterium excess in cyclohexanol formed from cyclohexanone was somewhat lower (49 atoms%) than found under conditions in vivo, and this was also true of the deuterium excess in lithocholic acid formed from 3-oxo-5beta-cholanoic acid. These results may reflect a slower rate of ethanol oxidation in the isolated organ than in vivo. Cycloserine decreased the dueterium transfer to both substrates, whereas addition of lactate and malate resulted in an increased deuterium excess in cyclohexanol and a decreased deuterium excess in lithocholic acid. Addition of heavy water to the perfusion fluid resulted in labelling at C-3 of lithocholic acid formed from 3-oxo-5beta-cholanoic acid, and at C-3, C-4 and C-5 of 3alpha-hydroxy-5alpha-cholanoic acid formed from 3-oxo-4-cholenoic acid. The deuterium excess of hydrogens derived from NADPH (at C-3 and C-5) was approximately the same as that of hydrogen derived directly from water (at C-4). Thus, the hydrogen of NADPH is extensively exchanged with protons of water, which explains the dilution of deuterium with protium during the transfer from [1,1-2-H]ethanol via NADPH to the bile acids. The labelling at C-5 in the reduction of the 4,5-double bond indicates that different pools of NADPH are used for reduction of this double bond and the 3-oxo group, since in a previous study it was shown that deuterium is transferred from [1,1-2-H]ethanol only in the latter reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号