共查询到20条相似文献,搜索用时 0 毫秒
1.
Somatic cellular differentiation plays a critical role in the transition from unicellular to multicellular life, but the evolution of its genetic basis remains poorly understood. By definition, somatic cells do not reproduce to pass on genes and so constitute an extreme form of altruistic behaviour. The volvocine green algae provide an excellent model system to study the evolution of multicellularity and somatic differentiation. In Volvox carteri, somatic cell differentiation is controlled by the regA gene, which is part of a tandem duplication of genes known as the reg cluster. Although previous work found the reg cluster in divergent Volvox species, its origin and distribution in the broader group of volvocine algae has not been known. Here, we show that the reg cluster is present in many species without somatic cells and determine that the genetic basis for soma arose before the phenotype at the origin of the family Volvocaceae approximately 200 million years ago. We hypothesize that the ancestral function was involved in regulating reproduction in response to stress and that this function was later co‐opted to produce soma. Determining that the reg cluster was co‐opted to control somatic cell development provides insight into how cellular differentiation, and with it greater levels of complexity and individuality, evolves. 相似文献
2.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association. 相似文献
3.
The ubiquity of outcrossing in plants and animals is difficult to explain given its costs relative to self‐fertilization. Despite these costs, exposure to changing environmental conditions can temporarily favor outcrossing over selfing. Therefore, recurring episodes of environmental change are predicted to favor the maintenance of outcrossing. Studies of host–parasite coevolution have provided strong support for this hypothesis. However, it is unclear whether multiple exposures to novel parasite genotypes in the absence of coevolution are sufficient to favor outcrossing. Using the nematode Caenorhabditis elegans and the bacterial parasite Serratia marcescens, we studied host responses to parasite turnover. We passaged several replicates of a host population that was well‐adapted to the S. marcescens strain Sm2170 with either Sm2170 or one of three novel S. marcescens strains, each derived from Sm2170, for 18 generations. We found that hosts exposed to novel parasites maintained higher outcrossing rates than hosts exposed to Sm2170. Nonetheless, host outcrossing rates declined over time against all but the most virulent novel parasite strain. Hosts exposed to the most virulent novel strain exhibited increased outcrossing rates for approximately 12 generations, but did not maintain elevated levels of outcrossing throughout the experiment. Thus, parasite turnover can transiently increase host outcrossing. These results suggest that recurring episodes of parasite turnover have the potential to favor the maintenance of host outcrossing. However, such maintenance may require frequent exposure to novel virulent parasites, rapid rates of parasite turnover, and substantial host gene flow. 相似文献
4.
The colonial volvocine algae span the full range of organizational complexity, from four-celled species to multicellular species, and this group of algae is often used for the study of evolution. In recent years, many organelle genomes have been sequenced using the application of next generation sequencing technology; however, only a few organelle genomes have been reported in colonial volvocine algae. In this study, we determined the organelle genomes of Eudorina elegans and Eudorina cylindrica and analysed the organelle genome size, structure and gene content between these volvocine species. This provided useful information to help us understand the composition of colonial volvocine organelle genomes. Based on the chloroplast genome protein-coding genes, we conducted a phylogenomics analysis of the volvocine algae. The result revealed an unexpected phylogenetic relationship, namely, E. elegans is more closely related to Pleodorina starrii than to E. cylindrica. The substitution rate of volvocine algae was then calculated based on organelle genome protein-coding genes; our analysis suggested the possibility that the two Eudorina species may be under similar evolutionary pressure. Lastly, the synteny analysis of the mitochondrial genome showed that gene arrangements and contents are highly conserved in the family Volvocaceae, and the synteny analysis of the chloroplast genome indicated that the genus Eudorina may have experienced genomic changes. 相似文献
5.
The volvocine lineage is a monophyletic grouping of unicellular, colonial and multicellular algae, and a model for studying the evolution of multicellularity. In addition to being morphologically diverse, volvocine algae boast a surprising amount of organelle genomic variation. Moreover, volvocine organelle genome complexity appears to scale positively with organismal complexity. However, the organelle DNA architecture at the origin of colonial living is not known. To examine this issue, we sequenced the plastid and mitochondrial DNAs (ptDNA and mtDNA) of the 4-celled alga Tetrabaena socialis, which is basal to the colonial and multicellular volvocines. Tetrabaena socialis has a circular-mapping mitochondrial genome, contrasting with the linear mtDNA architecture of its relative Chlamydomonas reinhardtii. This suggests that a circular-mapping mtDNA conformation emerged at or near the transition to group living in the volvocines, or represents the ancestral state of the lineage as a whole. The T. socialis ptDNA is very large (>405 kb) and dense with repeats, supporting the idea that a shift from a unicellular to a colonial existence coincided with organelle genomic expansion, potentially as a result of increased random genetic drift. These data reinforce the idea that volvocine algae harbour some of the most expanded plastid chromosomes from the eukaryotic tree of life. Circular-mapping mtDNAs are turning out to be more common within volvocines than originally thought, particularly for colonial and multicellular species. Altogether, volvocine organelle genomes became markedly more inflated during the evolution of multicellularity, but complex organelle genomes appear to have existed at the very beginning of colonial living. 相似文献
6.
The collection of evolutionary transformations known as the ‘major transitions’ or ‘transitions in individuality’ resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae. 相似文献
7.
The floral polymorphism tristyly involves three style morphs with a reciprocal arrangement of stigma and anther heights governed by two diallelic loci ( S and M). Tristyly functions to promote cross‐pollination, but modifications to stamen position commonly cause transitions to selfing. Here, we integrate whole‐genome sequencing and genetic mapping to investigate the genetic architecture of the M locus and the genetic basis of independent transitions to selfing in tristylous Eichhornia paniculata. We crossed independently derived semi‐homostylous selfing variants of the long‐ and mid‐styled morph fixed for alternate alleles at the M locus ( ssmm and ssMM, respectively), and backcrossed the F 1 to the parental ssmm genotype. We phenotyped and genotyped 462 backcross progeny using 1450 genotyping‐by‐sequencing (GBS) markers and performed composite interval mapping to identify quantitative trait loci (QTL) governing style‐length and anther‐height variation. A QTL associated with the primary style‐morph differences (style length and anther height) mapped to linkage group 5 and spanned ~13–27.5 Mbp of assembled sequence. Bulk segregant analysis identified 334 genes containing SNPs potentially linked to the M locus. The stamen modifications characterizing each selfing variant were governed by loci on different linkage groups. Our results provide an important step towards identifying the M locus and demonstrate that transitions to selfing have originated by independent sets of mating‐system modifier genes unlinked to the M locus, a pattern inconsistent with a recombinational origin of selfing variants at a putative supergene. 相似文献
8.
Self‐pollination has been hypothesized to be beneficial in environments where pollinators are rare as it can provide reproductive assurance. This study presents evidence for an autonomous self‐fertilization mechanism in the winter flowering plant, Brandisia hancei. To determine changes in the spatial separation of stigma and anthers, the length of style and stamens was recorded. Additionally, pollination treatments were carried out to test fruit‐set and seed production. Brandisia hancei is herkogamic in the early flowering stages. However, different growth rates of the filament and style lead to contact of stigma and anthers in the later stages, thereby facilitating self‐pollination. The highest seeds number is produced under an out‐crossing scenario but plants produce a considerable number of seeds even when purely selfed. Although pollinators are scarce, autonomous selfing alleviates the pollen limitation in B. hancei. Self‐fertilization in B. hancei seems to be an adaptive strategy to ensure reproduction when pollinators are scarce. 相似文献
10.
The microfilamentous green alga Uronema curvatum is widely distributed along the western and eastern coasts of the north Atlantic Ocean where it typically grows on crustose red algae and on haptera of kelps in subtidal habitats. The placement of this marine species in a genus of freshwater Chlorophyceae had been questioned. Molecular phylogenetic analysis of nuclear-encoded small and large subunit rDNA sequences reveal that U. curvatum is closely related to the ulvophycean order Cladophorales, with which it shares a number of morphological features, including a siphonocladous level of organization and zoidangial development. The divergent phylogenetic position of U. curvatum, sister to the rest of the Cladophorales, along with a combination of distinctive morphological features, such as the absence of pyrenoids, the diminutive size of the unbranched filaments and the discoid holdfast, warrants the recognition of a separate genus, Okellya, within a new family of Cladophorales, Okellyaceae. The epiphytic Urospora microscopica from Norway, which has been allied with U. curvatum, is revealed as a member of the cladophoralean genus Chaetomorpha and is herein transferred to that genus as C. norvegica nom. nov. 相似文献
11.
Recent studies reveal that relationships among the volvocine algae are more complex than was previously believed. Nevertheless, this group still appears to provide an unrivaled opportunity to analyze an evolutionary pathway leading from unicellularity (Chlamydomonas) to multicellularity with division of labor (Volvox). Significant progress in this regard was made in the past year when two genes playing key roles in Volvox cellular differentiation were cloned, and clues were uncovered regarding their mechanisms of action. 相似文献
12.
The genetic structure, selfing rate and inbreeding depression of the hermaphroditic freshwater snail Physa acuta were jointly analysed in a population near Montpellier, France. Allozymic markers revealed moderate gene diversity (0.138), and no heterozygote deficiency. The mean outcrossing rate, estimated by using progeny arrays, was 0.9, with substantial variation among families. This also suggests that the number of fathers among outcrossed offspring of a given mother is low. Inbreeding depression was estimated over more than one generation using 83 first‐laboratory‐generation (G 1) families. The main parameters measured were parental (G 1) fecundity, offspring (G 2) survival and fecundity. Size and growth were also monitored. Parental fecundity was analysed under several conditions (isolation, pair and quadruplet outcrossing). The self‐fertilization depression, including parental fecundity, offspring survival and fecundity, was about 0.9 at the population level. The genetic data obtained in the same population indicate a value of about 0.3 using Ritland’s (1990) technique, suggesting that the depression over the whole life‐cyle might be even higher than 0.9. Grouping affected neither fecundity nor self‐fertilization depression. Substantial variation in depression for survival was detected among individuals, from no survival in some selfed families to better survival than that of outbred families in others. The overall result (outbred population structure, high outcrossing rate and high self‐fertilization depression) is consistent with what is expected in large outcrossing populations in which inbreeding depression is maintained by mutation‐selection balance. 相似文献
14.
Cross‐ and self‐fertilization in angiosperms are regulated by several factors, and a knowledge of the mechanism and time of spontaneous self‐pollination offers opportunities for a better understanding of the evolution of mating systems and floral traits. The floral biology of five species of Gentianaceae found in high‐altitude neotropical grassland is presented, with emphasis on the mechanisms that promote spontaneous self‐pollination. A presumed floral Batesian mimicry system is suggested between the rare and rewardless Zygostigma australe and Calydorea campestris, a species of Iridaceae with pollen‐flowers, pollinated by syrphids and bees. The floral morphology of the other four gentian species points to three different pollination syndromes: melittophily, phalaenophily and ornithophily. However, with the exception of the nocturnal Helia oblongifolia, flowers are nectarless and appear to exhibit non‐model deceptive mechanisms, providing similar floral cues to some sympatric rewarding species with the same syndrome. The similar mechanism of spontaneous self‐pollination in Calolisianthus pedunculatus, Calolisianthus pendulus and H. oblongifolia (Helieae) is based on the stigmatic movements towards the anthers. Selfing is promoted by movements of the style/stigma and of the corolla in Deianira nervosa and Z. australe (Chironieae), respectively. The movements of stamens, style and stigma during anthesis seem to be the most common method of spontaneous self‐pollination in angiosperms. It is suggested that the evolution of delayed spontaneous self‐pollination would be more expected in those taxa with dichogamous flowers associated with herkogamy. Such a characteristic is frequent in long‐lived flowers of certain groups of Asteridae, which comprise most documented cases of autonomous selfing. Thus, the presence of dichogamy associated with herkogamy (which supposedly evolved as a result of selection to promote both separation of male and female functions and the efficient transfer of cross pollen) may be the first step in the adaptive evolution of delayed selfing to provide reproductive assurance. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 357–368. 相似文献
15.
Patterns of spatial genetic structure (SGS), typically estimated by genotyping adults, integrate migration over multiple generations and measure the effective gene flow of populations. SGS results can be compared with direct ecological studies of dispersal or mating system to gain additional insights. When mismatches occur, simulations can be used to illuminate the causes of these mismatches. Here, we report a SGS and simulation‐based study of self‐fertilization in Macrocystis pyrifera, the giant kelp. We found that SGS is weaker than expected in M. pyrifera and used computer simulations to identify selfing and early mortality rates for which the individual heterozygosity distribution fits that of the observed data. Only one (of three) population showed both elevated kinship in the smallest distance class and a significant negative slope between kinship and geographical distance. All simulations had poor fit to the observed data unless mortality due to inbreeding depression was imposed. This mortality could only be imposed for selfing, as these were the only simulations to show an excess of homozygous individuals relative to the observed data. Thus, the expected data consistently achieved nonsignificant differences from the observed data only under models of selfing with mortality, with best fits between 32% and 42% selfing. Inbreeding depression ranged from 0.70 to 0.73. The results suggest that density‐dependent mortality of early life stages is a significant force in structuring Macrocystis populations, with few highly homozygous individuals surviving. The success of these results should help to validate simulation approaches even in data‐poor systems, as a means to estimate otherwise difficult‐to‐measure life cycle parameters. 相似文献
17.
In marine green algae, isogamous or slightly anisogamous species are taxonomically widespread. They produce positively phototactic gametes in both sexes. We developed a new numerical simulator of gamete behavior using C++ and pseudo-parallelization methods to elucidate potential advantages of phototaxis. Input parameters were set based on experimental data. Each gamete swimming in a virtual rectangular test tank was tracked and the distances between the centers of nearby male and female were measured at each step to detect collisions. Our results shed light on the roles of gamete behavior and the mechanisms of the evolution of anisogamy and more derived forms of sexual dimorphism. We demonstrated that not only gametes with positive phototaxis were favored over those without, particularly in shallow water. This was because they could search for potential mates on the 2-D water surface rather than randomly in three dimensions. Also, phototactic behavior clarified the difference between isogamy and slight anisogamy. Isogamous species produced more zygotes than slightly anisogamous ones only under the phototactic conditions. Our results suggested that sperm limitation might be easily resolved particularly in the slightly anisogamous species. Some more markedly anisogamous species produce the smaller male gametes without any phototactic devices and the larger positively phototactic female gametes. In such species, female gametes attract their partners using a sexual pheromone. This pheromonal attraction system might have played a key role in the evolution of anisogamy, because it could enable markedly anisogamous species achieve 2-D search efficiencies on the water surface. The mating systems appear to be tightly tuned o the environmental conditions of their habitats. 相似文献
18.
Two types of long-wave fluorescence bands with similar band shape occur at room temperature in various algae: F II700 and F I715. F II700 occurs in a limited number of algae, follows PS II transients, increases with culture age and is moderately increased by cooling to 83 K. F I715 occurs in most algae, especially Anabaena, but much less in most diatoms and Tribonema. It does not follow PS II transients, does not increase with culture age and is much increased by cooling to 83 K.An interpretation for the characteristics of F II700 and F I715 is given. 相似文献
19.
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males. 相似文献
20.
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution. 相似文献
|