首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggressive behaviour can ensure animal access to local resources. To reduce constant costs in the defence of territories, species could save energy with conflicts avoiding aggression with neighbour or in situations with abundance of resources. In the present study, we analysed the effect of distance among colonies and resource availability on the aggression level and responses to chemical cues of Nasutitermes aff. coxipoensis (Holmgren) (Termitidae: Nasutitermitinae). Manipulation of resource offer was conducted in the field, where nests with different distances were kept without addition of baits (control), with addition of three or 16 sugarcane baits/nest. After 3 months, aggressiveness, linear and Y-shaped trail-following bioassays were carried out with all pairwise combinations of colonies in each treatment. Our results showed that aggressive index of N. aff. coxipoensis was affected by the resource availability. However, individuals from colonies with 0 and 3 baits/nest showed a higher number of fighting with neighbours than those from non-neighbours colonies. Termite workers from colonies without baits (control) followed shorter distance in the linear trails compared to those from colonies with addition of baits. In all treatments, there was no preference of workers in relation to the choice of chemical cues from own or other colonies. The response of intercolonial aggressiveness in N. aff. coxipoensis seems to be resource-dependent. These results may contribute to the comprehension of the use of space by N. aff. coxipoensis and could be useful to explain patterns of termite co-occurrence at different spatial scales, from local (inside the nest—e.g. cohabitation of nests by inquilines) to regional (e.g. around the nest).  相似文献   

2.
1. Resource density can regulate the area that animals use. At low resource density, there is a conflict in terms of balance between costs of foraging and benefits acquired. The foraging of the higher termite Nasutitermes aff. coxipoensis consists of searching throughout trails and a building galleries phase. 2. In this study, a manipulative field experiment was used to test the hypothesis that colonies of N. aff. coxipoensis forage towards a more profitable balance between the establishment of trails and gallery construction at low resource density. 3. The experiment was conducted in north‐eastern Brazil. Seven experimental plots were established with a continuous increase in resource density (sugarcane baits). Entire colonies of N. aff. coxipoensis were transplanted from their original sites to the experimental plot, totalling 35 nests. The number, branches and total length of trails and galleries were quantified. 4. The results show that N. aff. coxipoensis optimises its foraging output, intensifying the establishment of trails at the cost of gallery construction when resource density is low. The number of trails, the number of trail branches and the total length of trails decreased with increasing resource density. Interestingly, at low resource density, the search effort was concentrated on forming longer and a greater number of trails, a small proportion of which were converted into galleries. The opposite relationship was observed at high resource density. 5. These results suggest an optimisation of search efforts during foraging depending on resource density, a mechanism that may help researchers to understand the use of space by higher termite species.  相似文献   

3.
Organisms acquire energy from environment and must allocate it among different life traits (growth, maintenance and reproduction). Social insects must manage the energy allocation to various levels such as colony growth and caste functions. Here, we addressed the question of whether resource density affects the energy allocation to the number of individuals and caste functions as well as nest’s growth rate in the Neotropical termite Nasutitermes aff. coxipoensis (Homgren) (Termitidae: Nasutitermitinae). In a manipulative field experiment, colonies of N. aff. coxipoensis, with known volume, were maintained in plots with three different resource’s density (0.32, 0.64 and 1.92 baits/m2) over 3 months. After this period, the number of individuals as well as the caste identity and nest volume were measured. Surprisingly, our results showed that colonies reared in the extremes of resource’s density (0.32 and 1.92 baits/m2) produced a higher number of individuals compared with colonies reared with intermediate resource density (0. 64 baits/m2). The mean number of workers increased linearly with resource density; however, the average number of immature was higher in colonies reared with 0.32 baits/m2 compared with colonies reared with 0.64 and 1.92 baits/m2. No significant differences of resource density were observed in the mean number of soldiers, worker/soldier ratio as well as in the nest’s growth rate. In conclusion, the resource’s density seems to play an important role in determining the investment of energy in the number of individuals and caste in N. aff. coxipoensis colonies.  相似文献   

4.
In Polistes, nestmate recognition relies on the learning of recognition cues from the nest. When wasps recognize nestmates, they match the template learned with the odor of the encountered wasp. The social wasp Polistes biglumis use the homogeneous odor of their colony to recognize nestmates. When these colonies become host colonies of the social parasite P. atrimandibularis, colony odor is no longer homogeneous, as the parasite offspring have an odor that differs from that of their hosts. In trying to understand how the mechanism of nestmate recognition works in parasitized colonies and why parasite offspring are accepted by hosts, we tested the responses of resident Polistes biglumis wasps from parasitized and unparasitized colonies to newly emerged parasites and to nestmate and non-nestmate conspecifics. The experiments indicate that immediately upon eclosion both young parasites and young hosts lack a colony odor and that colony odor can be soon acquired from the accepting colony. In addition, while residents of nonparasitized colonies recognize only the odor of their species, resident hosts of parasitized colonies have learned a template that fits the odors of two species.  相似文献   

5.
The Effects of Starvation on Crayfish Responses to Alarm Odor   总被引:2,自引:0,他引:2  
The effect of starvation on responses to alarm odor was tested with individuals of an invasive and a native species of crayfish. I predicted that chemical predator cues would inhibit feeding less in starving than well-fed animals, and that this decrease would be stronger in a native compared with an invasive species. Individuals were exposed to food odor and then alarm odor after 3 and 10 d of starvation. The inhibition of food-related behavior patterns was similar on the 2 d of testing for individuals of the invasive species, Orconectes rusticus. Individuals of O. virilis showed a significant reduction in the effects of alarm odor detection on day 10 compared with day 3 of starvation. The lack of a change in responses to alarm odors between days of testing by individuals of O. rusticus may be because they are more responsive to alarm odors than individuals of O. virilis. This behavioral difference could contribute to the successful range extension of O. rusticus.  相似文献   

6.
The foraging and anti‐predator behaviour of captive‐reared rainbow darters (Etheostoma caeruleum) was compared to their wild‐caught counterparts. Wild‐caught darters responded with appropriate anti‐predator behaviour (reduced foraging activity) when exposed to alarm cues (e.g. stimuli from damaged skin) from both wild‐caught and captive‐reared darters, indicating that the diet in captivity did not inhibit the production of alarm cues. Captive‐reared individuals did not change their level of activity when exposed to alarm cues; however, their significantly lower baseline activity (movement and prey consumption) makes it unclear as to whether they actually failed to recognize risk. Regardless, captive‐reared darters showed little motivation to feed when food became available (i.e. they made few movements to obtain food) and appeared impervious to chemical cues indicating risk. Exposing captive‐reared individuals to both semi‐natural foraging opportunities and predator‐recognition training before their release is recommended.  相似文献   

7.
In social insects, nestmate recognition systems can be dynamic and modulated in response to various kinds of genetic and environmental cues. For example, multiple-queen colonies can possess weak recognition abilities relative to single-queen colonies, due to broader exposure to heritable and environmentally derived nestmate recognition cues.We conducted field experiments to examine nestmate recognition ability in a neotropical polygynous wasp, Polybia paulista. Despite the fact that the effective queen number in P. paulista is the highest ever recorded in polygynous wasps, this species exhibits a well functioning nestmate recognition system, which allows colony entry only to nestmate individuals. Similar to other social Hymenoptera, young wasps express colony specific chemical signatures within several days after emergence. This is the first study to show that the polygynous epiponine wasp is able to distinguish nestmates from non-nestmates. Received 23 May 2006; revised 6 October 2006; accepted 23 October 2006.  相似文献   

8.
Parabiotic ants—ants that share their nest with another ant species—need to tolerate not only conspecific nestmates, but also nestmates of a foreign species. The parabiotic ants Camponotus rufifemur and Crematogaster modiglianii display high interspecific tolerance, which exceeds their respective partner colony and extends to alien colonies of the partner species. The tolerance appears to be related to unusual cuticular substances in both species. Both species possess hydrocarbons of unusually high chain lengths. In addition, Cr. modiglianii carries high quantities of hereto unknown compounds on its cuticle. These unusual features of the cuticular profiles may affect nestmate recognition within both respective species as well. In the present study, we therefore examined inter-colony discrimination within the two parabiotic species in relation to chemical differentiation. Cr. modiglianii was highly aggressive against workers from alien conspecific colonies in experimental confrontations. In spite of high inter-colony variation in the unknown compounds, however, Cr. modiglianii failed to differentiate between intracolonial and allocolonial unknown compounds. Instead, the cuticular hydrocarbons functioned as recognition cues despite low variation across colonies. Moreover, inter-colony aggression within Cr. modiglianii was significantly influenced by the presence of two methylbranched alkenes acquired from its Ca. rufifemur partner. Ca. rufifemur occurs in two varieties (‘red’ and ‘black’) with almost no overlap in their cuticular hydrocarbons. Workers of this species showed low aggression against conspecifics from foreign colonies of the same variety, but attacked workers from the respective other variety. The low inter-colony discrimination within a variety may be related to low chemical differentiation between the colonies. Ca. rufifemur majors elicited significantly more inter-colony aggression than medium-sized workers. This may be explained by the density of recognition cues: majors carried significantly higher quantities of cuticular hydrocarbons per body surface.  相似文献   

9.
Predation is a strong selective force, and prey species may show specific adaptations that allow recognition, avoidance, and defense against predators. Facing a situation of predatory risk, anxiety constitutes a reaction of adaptive value, allowing to evaluate the potential risk of this encounter as well as to generate a physiological and behavioral response. Previous studies in the subterranean rodent Ctenomys talarum revealed that exposure to predator odors (urine or fur) generates an anxiety state and induces behavioral changes. However, no differences between the responses generated by both odor sources were observed, although fur odors may indicate a higher level of predatory immanence. Therefore, the aim of this study was to evaluate the behavioral and physiological responses of C. talarum to different intensities of predator odors (urine and fur) and to the repeated exposition to the same odorous stimulus. When comparing the highest behavioral effects elicited by both predatory odors on C. talarum, our study supports the assumption that fur odors are more anxiogenic than urine, while the former provoked significant changes in the distance traveled, the number of arm entries and time in transparent arms in the elevated plus maze; cat urine only caused slight changes on those behavioral parameters. Furthermore, we also found that the intensity of natural predator odor presented to tuco‐tucos has a role on the appearance of defensive behaviors, although an amount‐dependent relationship between predator odor and anxiety levels was not observed. Finally, while individuals exposed for 1 day to fur odor displayed an evident anxiety state, those exposed repeatedly for 5 consecutive days did not differ with the control group in their behavioral response, indicating a clear habituation to the predatory cue. In our intensity and habituation experiments, we did not find differences in the measured physiological parameters among control individuals, exposed to different cues intensity (urine and fur odor) and exposed only once or for 5 days to fur odor. These results provide valuable evidence that the types of predatory odor, along with the frequency of exposition, are important determinants of the appearance, strength, and extinction of defensive behaviors in the subterranean rodent C. talarum.  相似文献   

10.
When individuals of the crayfish Orconectes virilis detect an unlearned danger cue (alarm odor) and a novel cue (goldfish odor) at the same time, they form a learned association and behave as if the novel cue is associated with increased predation risk ( Hazlett et al. 2002 ). This study examined the potential for learned irrelevance in O. virilis and the circumstances under which blockage of the formation of a learned association could occur. If individuals experience a random pattern of alarm odor and goldfish odor over the days prior to the simultaneous detection of those two cues, no learned association is formed (= learned irrelevance). That is, there is no inhibition of responses to a food cue when goldfish odor is added if the crayfish has experienced a random pattern of the two cues. Learning was eliminated if the random pattern of cues was experienced before or after the simultaneous detection. To present the two cues (alarm and goldfish odors) to crayfish independently on separate days, the water containing goldfish odor had to be removed from the aquaria as the odor persisted at least 24 h. The importance of the learned irrelevance phenomenon on predator–prey interactions is discussed.  相似文献   

11.
Nestmate recognition is the basic mechanism for rejecting foreign individuals and is essential for maintaining colony integrity in insect societies. However, in honeybees, Apis mellifera, both workers and males occasionally gain access to foreign colonies in spite of nest guards (=drifting). Instead of conducting direct behavioural observations, we inferred nestmate recognition for males and workers from the genotypes of naturally drifting individuals in honeybee colonies. We evaluated the degree of polyandry of the resident queens, because nestmate recognition theory predicts that the genotypic composition of insect colonies may affect the recognition precision of guards. Workers (N=1346) and drones (N=407) from 38 colonies were genotyped using four DNA microsatellite loci. Foreign bees were identified by maternity testing. The proportion of foreign individuals in a host colony was defined as immigration. Putative mother queens were identified if a queen's genotype corresponded with the genotype of a drifted individual. The proportion of a colony's individuals in the total number of drifted individuals was defined as emigration. Drones immigrated significantly more frequently than workers. The impact of polyandry was significantly different between drones and workers. Whereas drones immigrated more readily into less polyandrous colonies, worker immigration was not correlated with the degree of polyandry of the host colony. Furthermore, colonies with high levels of emigrated drones did not show high levels of emigration for workers, and colonies that adopted many workers did not adopt many foreign drones. Our data indicate that genetically derived odour cues are important for honeybee nestmate recognition in drones and show that different nestmate recognition mechanisms are used to identify drones and workers.  相似文献   

12.
In the traditional sense, food ingestion consists of prehending, masticating, swallowing, and digesting plant matter. It is also possible to ingest plants without eating them. Volatile compounds are inhaled directly into the lungs and transported from the lungs into the bloodstream. Volatiles in high concentrations could presumably produce toxicosis, without an herbivore ever ingesting a plant in the customary sense. Volatile compounds may be aposematic, serving to warn potential predators of toxins in plants. We conducted three experiments to explore the roles of odor, taste, and toxicity in the food preferences of lambs. The first experiment determined if brief exposure to a novel odor followed by lithium chloride (LiCl)‐induced toxicosis caused lambs to avoid a familiar food that contained the odor. Lambs that sniffed coconut‐flavored barley and then received LiCl subsequently ate less coconut‐flavored barley than lambs that did not receive LiCl. The second experiment determined if lambs were deterred from eating a familiar food by the odor of Astragalus bisulcatus. A. bisulcatus is a malodorous (to humans) sulfur‐containing herb considered unpalatable and toxic. Neither odor nor intraruminal infusions of A. bisulcatus deterred lambs from feeding. The third experiment also determined how the degree of familiarity with the odor of A. bisulcatus, along with toxicosis, influenced preference of lambs for food with or without the odor of A. bisulcatus. Lambs with 8 d exposure to the odor but not given LiCl ate similar amounts of food, with and without the odor of A. bisulcatus, whereas lambs given LiCl showed a mild aversion to food with the odor during testing. Lambs with 1 d exposure to the odor but no LiCl ate similar amounts of food, with and without the odor, whereas lambs given LiCl showed a strong but transient aversion to food with the odor. Collectively, these findings show that lambs responded strongly to novel odors, but their response was transient and depended on the postingestive consequences of toxins and nutrients associated with odor inhalation. Thus, we submit that odor alone, in the absence of toxicosis or nociception, is not a deterrent to herbivores that continually sample foods and adjust intake based on the postingestive effects of toxins and nutrients. It also is unlikely that non‐toxic plants can mimic the odors of toxic plants to avoid herbivory (Batesian mimicry), unless the odors are indistinguishable by herbivores, again because herbivores constantly sample foods.  相似文献   

13.
We investigated the diet, feeding strategy, size-related dietary shifts and prey preferences of South American Hoplias aff. malabaricus in an internationally recognized but poorly investigated Biosphere Reserve in southern Brazil. Fish were caught between April 2008 and March 2009 using a variety of fishing gear. The analysis of 113 individuals revealed a diet essentially composed of fish (16 species), particularly characid species (9). The diet became more diverse and contained larger fish prey with increasing predator size. Feeding strategy analysis revealed a clear specialization towards the consumption of fish. However, individuals did not prey upon particular prey species, instead opportunistically consuming many different fish species, which could be a strategy to avoid intraspecific competition. Characid species were the most important prey, followed by poecillids. A multi-gear sampling of the ichthyofauna revealed that these prey species were the most abundant (Characidae: 61.3%, Poeciliidae 18.8%) of the 14 fish families occurring at the study site, suggesting that the predator exploits the most abundant fish resources available rather than the rarer fish prey. These findings suggest that potential top-down controls exerted by H. aff. malabaricus in this system follow specific food web pathways that seem to be mediated by the abundance of prey resources.  相似文献   

14.
Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) learns odors in association with both hosts and food. The food‐associated ‘seeking’ behavior of M. croceipes was investigated under various training protocols utilizing the conditioning odor, 3‐octanone. We investigated the effects of odor training, or its lack, training duration, training frequency, time elapsed after training, wasp hunger state, and training reinforcement, on the food‐seeking responses of M. croceipes females. We found that odor‐trained females show strong food seeking responses, whereas non‐odor‐trained females do not respond to the odor, and that a single 10 s association with the odor whilst feeding on sugar water subsequently conditioned the wasps to exhibiting significant responses to it. Increases in training time to more than 10 s did not improve their responses. Repetition of the food–odor associations increased a wasp's recall, as well as its response over time, compared to a single exposure. Repeated exposure to the learned odor in the absence of a food reward decreased the responses of less hungry individuals. However, the level of response increased significantly following a single reinforcement with the food–odor association. Understanding the factors that influence learning in parasitoids can enhance our ability to predict their foraging behavior, and opens up avenues for the development of effective biological detectors.  相似文献   

15.
An experimental model of mixed societies of ants was used to test the effect of early conditioning to a mixed colony odor on interspecific recognition after various periods of separation, with Manica rubida (Myrmicinae) and Formica selysi (Formicinae). Recognition was evaluated by recording the behaviour of individuals interacting after they had been grouped in mixed societies. The observed frequency and nature of these interactions depended on the way the societies were made up (whether with the same or different species, and with or without previous exposure to that species). The recognition displayed by the workers was much more altered in interspecific than in intraspecific groupings, which is evidence of the existence of some species recognition. In addition, the adult is capable of recognizing the olfactory characteristics of its group, the group odor would be a mixture of individual odors.  相似文献   

16.
ABSTRACT

Fish odor induces predator avoidance behaviors in zooplankton, like vertical migration, by making zooplankton more responsive to light. Odor cues that alter behavior in marine crustacean zooplankton in the laboratory include sulfated glycosaminoglycans (sGAGs) derived from fish body mucus. Few studies quantify these cues in estuarine/marine environments or assess whether laboratory studies reflect natural scenarios. We collected fish and water samples weekly in Broadkill River, Delaware, USA. We used field-collected water in colorimetric assays to determine the concentration of sGAG-equivalent molecules and in behavioral assays with a zooplankton model, brine shrimp (Artemia spp.) nauplii, which only descend in response to downwelling light after fish odor exposure. Fish quantity was positively related to sGAG-equivalents and zooplankton photosensitivity, indicated by descent responses at lower light levels and across a broad intensity range. Our results support that fish odor concentrations used in previous laboratory assays are consistent with levels found in an estuary.  相似文献   

17.
Recognition of group‐members is a key feature of sociality. Ants use chemical communication to discriminate nestmates from intruders, enhancing kin cooperation and preventing parasitism. The recognition code is embedded in their cuticular chemical profile, which typically varies between colonies. We predicted that ants might be capable of accurate recognition in unusual situations when few individuals interact repeatedly, as new colonies started by two to three queens. Individual recognition would be favoured by selection when queens establish dominance hierarchies, because repeated fights for dominance are costly; but it would not evolve in absence of hierarchies. We previously showed that Pachycondyla co‐founding queens, which form dominance hierarchies, have accurate individual recognition based on chemical cues. Here, we used the ant Lasius niger to test the null hypothesis that individual recognition does not occur when co‐founding queens do not establish dominance hierarchies. Indeed, L. niger queens show a similar level of aggression towards both co‐foundresses and intruders, indicating that they are unable of individual recognition, contrary to Pachycondyla. Additionally, the variation in chemical profiles of Lasius and Pachycondyla queens is comparable, thus informational constraints are unlikely to apply. We conclude that selection pressure from the social context is of crucial significance for the sophistication of recognition systems.  相似文献   

18.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

19.
Summary. Nestmate recognition cues can derive from both environmental and genetic factors, but can also be modulated in response to context-specific cues. Synchronous changes in nestmate recognition systems occur seasonally in some species of ants, however the mechanisms underlying these seasonal changes are often unknown. We studied two mechanisms, relative brood number and food availability, to determine if they generate temporal variation in intraspecific aggression in an introduced population of the Argentine ant, Linepithema humile. Using data from previous studies we found that seasonal increases in aggression levels correlate with seasonal increases in brood-to-worker ratios in the field. However, when we manipulated brood-to-worker ratios in paired experimental colonies, we found no direct evidence that relative brood numbers influenced aggression levels. To determine if food availability influenced aggression we conducted a second experiment in which we randomly assigned pairs of experimental colonies to starved or fed treatments and then measured aggression levels weekly for five weeks. We observed no difference in the level of aggression between these two treatment groups indicating that food availability also has no affect on aggression levels between hostile conspecific colonies.Received 24 August 2004; revised 15 September 2004; accepted 23 September 2004.  相似文献   

20.
The ability of two species of Polistes wasps to distinguish their own from nearby nests was tested, following the procedure used by Espelie et al. Our experiments demonstrated that, in the laboratory, females of Polistes dominulus and Polistes nimphus preferentially selected their own nests rather than nearby nests. We also evaluated the role of odor cues in nest recognition by washing nests in hexane to remove the apolar solvent-soluble components of nest odor. Although P. nimphus females continued to discriminate nests even after washing, P. dominulus individuals failed to discriminate between their own and a foreign neighboring nest. In both species, wasps were able to recognize their own nests when nest extracts were subsequently reapplied to the nest surface. These results indicate that P. dominulus wasps recognize their nests through perception of nest odor. The ability of P. nimphus wasps to distinguish their own nests even after presumed removal of the nest odor is discussed. Received: January 27, 2000 / Accepted: May 22, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号