首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the \"relative\" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection (\"Large,\"Control,\" and \"Small\" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.  相似文献   

2.
Evidence for an association between chromosomal form and development time in the grasshopper Caledia captiva (F.) was obtained through comparison of two geographic taxa and analysis of a complex latitudinal cline within one of the taxa. Northern populations of the Moreton taxon possess a metacentric genome and are slow-developing. In contrast, the Torresian taxon, distributed throughout northern, coastal Australia, a region of pronounced seasonality in rainfall, and southern populations of the Moreton taxon, which inhabit a region of pronounced seasonality in temperature, Soth have an acrocentric genome and are fast-developing. The convergence of chromosomal form and development time between Torresian and southern Moreton populations appears to be driven by convergence in life history. Seasonality limits grasshoppers to one generation per year and favours fast development. The transition between relatively acrocentric southern Moreton populations and relatively metacentric northern Moreton populations is gradual but not monotonic. Instead, a shift to a bivoltine life history in the middle of the transect occurs and is associated with shifts in both development time and chromosomal form. These results imply an adaptive role for chromosomal form, although the causative link between chromosomal variation and variation in development time remains to be established.  相似文献   

3.
    
1. Variation in thermal conditions and season length along latitudinal gradients affect body size‐related traits over different life stages. Selection is expected to optimise these size traits in response to the costs and benefits. 2. Egg, hatchling, larval and adult size in males and females were estimated along a latitudinal gradient of 2730 km across Europe in the univoltine damselfly Lestes sponsa, using a combination of field‐collection and laboratory‐rearing experiments. In the laboratory, individuals were grown in temperatures and photoperiod simulating those at the latitude of origin, and in common‐garden conditions. 3. The size of adults sampled in nature was negatively correlated with latitude. In all populations the females were larger than the males. Results from simulated and common‐garden rearing experiments supported this pattern of size difference across latitudes and between sexes, suggesting a genetic component for the latitudinal size trend and female‐biased size dimorphism. In contrast, hatchling size showed a positive relationship with latitude, but egg size, although differing between latitudes, showed no such relationship. 4. The results support a converse Bergmann cline, i.e. a negative body size cline towards the north. This negative cline in body size is probably driven by progressively stronger seasonal time and temperature constraints towards the higher latitudes and by the obligate univoltine life cycle of L. sponsa. As egg size showed no relationship with latitude, other environmental factors besides temperature, such as desiccation risk, probably affect this trait.  相似文献   

4.
Based on published data, we reviewed clinal variations in life-history characteristics of anadromous brown trout Salmo trutta from 102 European rivers at latitudes between 54 and 70° N. Growth rate in fresh water, mean smolt age, mean sea age at first sexual maturity, proportion of repeal spawners among adults, longevity, and length of adult life span exhibited latitudinal clines. Brown trout grew faster in fresh water, smolted and matured younger, lived fewer years but spawned more times in the south than in the north. The life-history traits studied were often correlated. Longevity, smolt age and sea age at maturity were negatively and smolt length and proportion of repeat spawners among adults were positively correlated with growth rate in fresh water. Longevity was positively correlated with smolt age and sea age at maturity. The latter also increased with increasing smolt age. None of these significant correlations among life history variables, except for those between smolt age and parr growth and proportion of repeat spawners and parr growth, are latitudinal effects. We do not know to what extent the latitudinal variation in life–history traits reflects phenotypic plasticity and to what extent it is caused by inherited differences among populations.  相似文献   

5.
Large amounts of genetic variation for wing length and wing area were demonstrated both within and between Drosophila melanogaster populations along a latitudinal gradient in South America. Wing length and wing area showed a strong positive correlation with latitude in both wild flies and laboratory-raised descendants. Large population differences were observed for heritability and coefficient of variation of these two traits, whereas relatively small population differences were found for development time, viability, pupal mortality, sex ratio and their norms of reaction to four developmental temperatures. No clear-cut latitudinal clines were established for these life-history characters. These results are discussed in the light of Bergmann's Rule and the relation between larval development and adult body size.  相似文献   

6.
    
Female‐biased sexual size dimorphism (SSD) is widespread in many invertebrate taxa. One hypothesis for the evolution of SSD is the dimorphic niche hypothesis, which states that SSD evolved in response to the different sexual reproductive roles. While females benefit from a larger body size by producing more or larger eggs, males benefit from a faster development, which allows them to fertilize virgin females (protandry). To test this hypothesis, we studied the influence of temperature and intraspecific density on the development of Chorthippus montanus. We reared them in monosexual groups under different conditions and measured adult body size, wing length, nymphal mortality, and development time. The present study revealed an inverse temperature–size relationship: body size increased with increasing temperature in both sexes. Furthermore, we found intersexual differences in the phenotypic response to population density, supporting the dimorphic niches hypothesis. At a lower temperature, female development time increased and male body size decreased with increasing density. Because there was no food limitation, we conclude that interference competition hampered development. By contrast to expectations, mortality decreased with increasing density, suggesting that interference did not negatively affect survival. The present study shows that sex‐specific niche optima may be a major trigger of sexual dimorphisms. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 48–57.  相似文献   

7.
    
For many insect species, egg and larval substrate characteristics are significantly correlated with interspecific differences in female reproductive allocation and egg size-number tradeoffs. We tested the hypothesis that a similar pattern occurred within the Australian drosophilid, Drosophila hibisci, that is restricted throughout its life cycle to flowers of species in the genus Hibiscus. These plants occur as small, isolated, normally monospecific stands that should facilitate differentiation of the fly populations in relation to specific oviposition and larval substrates. Data from 38 sites ranging from 20.8̀ to 34.4̀ S latitude in eastern Australia indicated no relationship between female body size, egg size, or ovariole numbers and floral size or mass among four species of Hibiscus. However, the flies did show a latitudinal cline in ovariole number that was independent of floral variation. Females averaged 15–20 ovarioles per female in the south (32–34̀ S latitude) and 10–12 ovarioles in the north (21–22̀ S latitude). The increase in ovariole number with latitude was due to divergence in the ovariole number of the largest females. In contrast, small females in the north and south had the same number of ovarioles. Reproductive allocation of female flies in the northern region was less than females in the southern region. The latitudinal divergence in ovariole number was not associated with habitat differences (density of trees, density of flies and beetles), nor with differences in floral characteristics (flower weight, petal length, yeast species present). Short term weather patterns in daily temperature and rainfall preceding collections pardy explain the variation in ovariole number. These observations in conjunction with preliminary genetic results suggest the cline is associated with genetic differences that interact with environmental determinants such as the temperature during larval development.  相似文献   

8.
    
The constraint envelope describing the relationship between geographical range size and body size has usually been explained by a minimum viable population size model, furnishing a strong argument for species selection if geographical range size turns out to be ‘heritable’. Recent papers have questioned this assumption of nonzero geographical range heritability at a phylogenetic level, meaning that the logic that constraint envelopes provide support for higher‐level selection fails. However, I believe that analysis of constraint envelopes can still furnish insights for the hierarchical expansion of evolutionary theory because the fitness furnished by variation in body size, which is frequently measured as a highly ‘heritable’ trait at the species level, can be partitioned into anagenetic and cladogenetic components. The constraint envelope furnishes an explicit mechanism for large‐body biased extinction rates influencing the distribution of body size. More importantly, it is possible to envisage a scenario in which anagenetic trends driving an increase in body size in higher latitudes within species (Bergmann's rule) are counteracted by available habitat area or continental edges constraining overall species distribution in these higher latitudes, increasing the probability of extinction. Under this combined model, faunas at higher latitudes and under habitat constraints may reach equilibrium points between these opposing hierarchical adaptive forces at smaller body size than faunas with less intense higher‐level constraints and will tend to be more right‐skewed.  相似文献   

9.
Body size latitudinal clines have been widley explained by the Bergmann's rule in homeothermic vertebrates. However, there is no general consensus in poikilotherms organisms in particular in insects that represent the large majority of wildlife. Among them, bees are a highly diverse pollinators group with high economic and ecological value. Nevertheless, no comprehensive studies of species assemblages at a phylogenetically larger scale have been carried out even if they could identify the traits and the ecological conditions that generate different patterns of latitudinal size variation. We aimed to test Bergmann's rule for wild bees by assessing relationships between body size and latitude at continental and community levels. We tested our hypotheses for bees showing different life history traits (i.e. sociality and nesting behaviour). We used 142 008 distribution records of 615 bee species at 50 × 50 km (CGRS) grids across the West Palearctic. We then applied generalized least squares fitted linear model (GLS) to assess the relationship between latitude and mean body size of bees, taking into account spatial autocorrelation. For all bee species grouped, mean body size increased with higher latitudes, and so followed Bergmann's rule. However, considering bee genera separately, four genera were consistent with Bergmann's rule, while three showed a converse trend, and three showed no significant cline. All life history traits used here (i.e. solitary, social and parasitic behaviour; ground and stem nesting behaviour) displayed a Bergmann's cline. In general there is a main trend for larger bees in colder habitats, which is likely to be related to their thermoregulatory abilities and partial endothermy, even if a ‘season length effect’ (i.e. shorter foraging season) is a potential driver of the converse Bergmann's cline particularly in bumblebees.  相似文献   

10.
Latitudinal clines have been demonstrated for many quantitative traits in Drosophila and are assumed to be due to climatic selection. However, clinal studies are often performed in species of Drosophila that contain common cosmopolitan inversion polymorphisms that also show clinal patterns. These inversion polymorphisms may be responsible for much of the observed clinal variation. Here, we consider latitudinal clines for quantitative traits in Drosophila simulans from eastern Australia. Drosophila simulans does not contain cosmopolitan inversion polymorphisms, so allows the study of clinal selection on quantitative traits that are not confounded by associations with inversions. Body size showed a strong linear cline for both females and males. Starvation resistance exhibited a weak linear cline in females, whereas chill-coma recovery exhibited a significant nonlinear cline in females only. No clinal pattern was evident for development time, male chill-coma recovery, desiccation or heat resistance. We discuss these results with reference to the role inversion polymorphisms play in generating clines in quantitative traits of Drosophila.  相似文献   

11.
    
1. Body size is highly correlated with physiological traits, fitness, and trophic interactions. These traits are subject to change if there are widespread reductions of body size with warming temperatures, which is suggested as one of the ‘universal’ ecological responses to climate change. However, general patterns of body size response to temperature in insects have not yet emerged. 2. To address this knowledge gap, we paired the wing length (as a proxy for body size) of 5331 museum specimens of 14 species of British Odonata with historical temperature data. Three sets of analyses were performed: (i) a regression analysis to test for a relationship between wing length and mean seasonal temperature within species and subsequent comparisons across species and suborders; (ii) an investigation of whether the body size of species has an effect on sensitivity to warming temperature; and (iii) a linear-mixed effects model to investigate factors that potentially affect temperature–size response. 3. The regression analysis indicated that wing length is negatively correlated with mean seasonal temperatures for Zygoptera, whereas Anisoptera showed no significant correlation with temperature. 4. There is a significant decline in wing length of all Zygoptera (but not Anisoptera) with collection date, suggesting that individuals emerging later in the season are smaller. 5. Life-cycle type was not important for predicting wing length–temperature responses, whereas sex, species, and suborder were indicated as important factors affecting the magnitude of temperature–size responses in Odonata. 6. Overall, wing lengths of Zygoptera are more sensitive to temperature and collection date than Anisoptera.  相似文献   

12.
Range expansion during biological invasion requires that invaders adapt to geographical variation in climate, which should yield latitudinal clines in reproductive phenology. We investigated geographic variation in life history among 25 introduced populations of Lythrum salicaria, a widespread European invader of North American wetlands. We detected a strong latitudinal cline in initiation of flowering and size at flowering, which paralleled that reported among native populations. Plants from higher latitudes flowered earlier and at a smaller size than those from lower latitudes, even when raised in a uniform glasshouse. Early flowering was associated with greatly reduced reproductive output, but this was not associated with latitudinal variation in abundance, and probably did not result from a genetic correlation between time to and size at flowering. As introduction to North America c. 200 years ago, L. salicaria has re-established latitudinal clines in life history, probably as an evolutionary response to climatic selection.  相似文献   

13.
    
Adult body size often exhibits patterns across large-scale environmental gradients, creating ecogeographic clines. However, the form of body size clines varies across taxonomic groups, with linear and non-linear patterns in body size observed in nature. Non-linear body size clines have received less study, and questions remain about how environmental gradients interact to produce non-linear clines. We examined the body size of the American horseshoe crab (Limulus polyphemus), a widely distributed marine arthropod, and evaluated the hypothesis that temperature and active season length can interact multiplicatively to result in a dome-shaped distribution.  相似文献   

14.
    
Sexual traits are subject to evolutionary forces that maximize reproductive benefits and minimize survival costs, both of which can depend on environmental conditions. Latitude explains substantial variation in environmental conditions. However, little is known about the relationship between sexual trait variation and latitude, although body size often correlates with latitude. We examined latitudinal variation in male and female sexual traits in 22 populations of the false blister beetle Oedemera sexualis in the Japanese Archipelago. Males possess massive hind legs that function as a female‐grasping apparatus, while females possess slender hind legs that are used to dislodge mounting males. Morphometric analyses revealed that male and female body size (elytron length), length and width of the hind femur and tibia, and allometric slopes of these four hind leg dimensions differed significantly among populations. Of these, three traits showed latitudinal variation, namely, male hind femur was stouter; female hind tibia was slenderer, and female body was smaller at lower latitudes than at higher latitudes. Hind leg sizes and shapes, as measured by principal component analysis of these four hind leg dimensions in each sex, covaried significantly between sexes, suggesting coevolutionary diversification in sexual traits. Covariation between sexes was weaker when variation in these traits with latitude was removed. These results suggest that coevolutionary diversification between male and female sexual traits is mediated by environmental conditions that vary with latitude.  相似文献   

15.
    
Tropical birds are purported to be longer lived than their temperate counterparts, but it has not been shown whether avian survival rates covary with latitude worldwide. Here, we perform a global‐scale meta‐analysis of 949 estimates from 204 studies of avian survival and demonstrate that a latitudinal survival gradient exists in the northern hemisphere, is dampened or absent for southern hemisphere species, and that differences between passerines and nonpasserines largely drive these trends. We also show that while extrinsic factors related to climate were poor predictors of apparent survival compared to latitude alone, the relationship between apparent survival and latitude is strongly mediated by intrinsic traits – large‐bodied species and species with smaller clutch size had the highest apparent survival. Our findings reveal that differences among intrinsic traits and whether species were passerines or nonpasserines surpass latitude and its underlying climatic factors in explaining global patterns of apparent avian survival.  相似文献   

16.
Evolution of Rotifer Life Histories   总被引:1,自引:0,他引:1  
When compared to most other multicellular animals, rotifers are all relatively small, short-lived and fast-reproducing organisms. However among and within different rotifer species there is a large variation in life history patterns. This review accounts for such variation in rotifers, with a strong focus on monogonont rotifers. As the life cycle of monogonont rotifers involves both asexual and sexual reproduction, life history patterns can be examined on the level of the genetic individual, which includes all asexual females, sexual females and males that originated from one resting egg. This concept has been applied successfully in many areas, for example in predicting optimal levels of mictic reproduction or sex allocation theory. The benefits and implications of the view of the genetic individual are discussed in detail. Rotifer life histories can also be viewed on the level of physiological individuals. A large part of this review deals with the life histories of individual amictic females and addresses life history traits like body size, egg size and resource allocation patterns. It asks which trade-offs exist among those traits, how these traits change under the influence of environmental factors like food availability or temperature, and whether these changes can be interpreted as adaptive.  相似文献   

17.
    
Theory predicts that within‐population differences in the pace‐of‐life can lead to cohort splitting and produce marked intraspecific variation in body size. Although many studies showed that body size is positively correlated with fitness, many argue that selection for the larger body is counterbalanced by opposing physiological and ecological selective mechanisms that favour smaller body. When a population split into cohorts with different paces of life (slow or fast cohort), one would expect to detect the fitness–size relationship among and within cohorts, that is, (a) slower‐developing cohort has larger body size and higher fitness than faster‐developing cohort, and (b) larger individuals within each cohort show higher fitness than smaller individuals. Here, we test these hypotheses in capture–mark–recapture field surveys that assess body size, lifespan, survival and lifetime mating success in two consecutive generations of a partially bivoltine aquatic insect, Coenagrion mercuriale, where the spring cohort is slower‐developing than the autumn cohort. As expected, body size was larger in the slow‐developing cohort, which is consistent with the temperature‐size rule and also with the duration of development. Body size seasonal variation was greater in slow‐developing cohort most likely because of the higher variation in age at maturity. Concordant with theory, survival probability, lifespan and lifetime mating success were higher in the slow‐developing cohort. Moreover, individual body size was positively correlated with survival and mating success in both cohorts. Our study confirms the fitness costs of fast pace‐of‐life and the benefits of larger body size to adult fitness.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

19.
    
Latitudinal variation in egg size and number in anadromous masu salmon Oncorhynchus masou was examined. Relatively greater variation in egg size occurred among rivers than among females within rivers or within females. Egg size was generally greater and egg number generally lower at more northerly latitudes.  相似文献   

20.
We investigated the age, growth and population structure of lake sturgeon in the Groundhog and Mattagami rivers, northern Ontario, Canada. Age, estimated from counts of annuli in pectoral fin rays, ranged from 1 to 69 years (y) in the 327 fish examined. Growth, expressed as an increase in fork length and calculated from a von Bertalanffy growth equation, slowed from a peak of about 3.9cmyear-1during the early juvenile period (<9y) and approached an asymptote beyond 90y (FL=141.549[–e-0.043(t–4.901)]). A length–mass equation (log M=3.07 log FL–2.26) and conversion factors for fork and total length (FL=0.97 TL–1.154) from our study ranged from 14.5 to 142cm (fork length), 15.5 to 158cm (total length) and 20 to 19730g (live mass) for 1177 individuals. We found no evidence for spawning or recruitment to the population in our study area. Population age and length structure were strongly bimodal, and growth rate appears to have slowed over the past decade. We discuss the possible environmental correlations and conservation implications of this age (size) distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号