首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.  相似文献   

2.
1. Certain groups of fruit flies in the genus Rhagoletis (Diptera: Tephritidae) are exemplars for sympatric speciation via host plant shifting. Flies in these species groups are morphologically similar and overlap in their geographic ranges, yet attack different, non‐overlapping sets of host plants. Ecological adaptations related to differences in host choice and preference have been shown to be important prezygotic barriers to gene flow between these taxa, as Rhagoletis flies mate on or near the fruit of their respective host plants. Non‐host‐related assortative mating is generally absent or present at low levels between these sympatrically diverging fly populations. 2. However, some Rhagoletis taxa occasionally migrate to ‘non‐natal’ plants that are the primary hosts of other, morphologically differentiated fly species in the genus. These observations raise the question of whether sexual isolation may reduce courtship and copulation between morphologically divergent species of Rhagoletis flies, contributing to their prezygotic isolation along with host‐specific mating. 3. Using reciprocal multiple‐choice mating trials, we measured sexual isolation among nine species pairs of morphologically differentiated Rhagoletis flies. Complete sexual isolation was observed in eight of the nine comparisons, while partial sexual isolation was observed in the remaining comparison. 4. We conclude that sexual isolation can be an effective prezygotic barrier to gene flow contributing to substantial reproductive isolation between many morphologically distinct Rhagoletis species, even in the absence of differential host plant choice and host‐associated mating.  相似文献   

3.
Theory suggests that, under some circumstances, sexual conflict over mating can lead to divergent sexually antagonistic coevolution among populations for traits associated with mating, and that this can promote reproductive isolation and hence speciation. However, sexual conflict over mating may also select for traits (e.g. male willingness to mate) that enhance gene flow between populations, limiting population divergence. In the present study, we compare pre‐ and post‐mating isolation within and between two species characterized by male–female conflict over mating rate. We quantify sexual isolation among five populations of the seed bug Lygaeus equestris collected from Italy and Sweden, and two replicates of a population of the sister‐species Lygaeus simulans, also collected from Italy. We find no evidence of reproductive isolation amongst populations of L. equestris, suggesting that sexual conflict over mating has not led to population divergence in relevant mating traits in L. equestris. However, there was strong asymmetric pre‐mating isolation between L. equestris and L. simulans: male L. simulans were able to mate successfully with female L. equestris, whereas male L. equestris were largely unable to mate with female L. simulans. We found little evidence for strong post‐mating isolation between the two species, however, with hybrid F2 offspring being produced. Our results suggest that sexual conflict over mating has not led to population divergence, and indeed perhaps supports the contrary theoretical prediction that male willingness to mate may retard speciation by promoting gene flow.  相似文献   

4.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

5.
Nosil P  Crespi BJ  Gries R  Gries G 《Genetica》2007,129(3):309-327
Sexual isolation can evolve due to natural selection against hybrids (reinforcement). However, many different forms of hybrid dysfunction, and selective processes that do not involve hybrids, can contribute to the evolution of sexual isolation. Here we review how different selective processes affect the evolution of sexual isolation, describe approaches for distinguishing among them, and assess how they contribute to variation in sexual isolation among populations of Timema cristinae stick-insects. Pairs of allopatric populations of T. cristinae living on different host-plant species exhibit greater sexual isolation than those on the same host, indicating that some sexual isolation has evolved due to host adaptation. Sexual isolation is strongest in regions where populations on different hosts are in geographic contact, a pattern of reproductive character displacement that is indicative of reinforcement. Ecological costs to hybridization do occur but traits under ecological selection (predation) do not co-vary strongly with the probability of between-population mating such that selection on ecological traits is not predicted to produce a strong correlated evolutionary response in mate preference. Moreover, F1 hybrid egg inviability is lacking and the factors contributing to reproductive character displacement require further study. Finally, we show that sexual isolation involves, at least in part, olfactory communication. Our results illustrate how understanding of the evolution of sexual isolation can be enhanced by isolating the roles of diverse ecological and evolutionary processes.  相似文献   

6.
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females.  相似文献   

7.
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

8.
The relative importance of male and female mating preferences in causing sexual isolation between species remains a major unresolved question in speciation. Despite previous work showing that male courtship bias and/or female copulation bias for conspecifics occur in many taxa, the present study is one of the first large‐scale works to study their relative divergence. To achieve this, we used data from the literature and present experiments across 66 Drosophila species pairs. Our results revealed that male and female mate preferences are both ubiquitous in Drosophila but evolved largely independently, suggesting different underlying evolutionary and genetic mechanisms. Moreover, their relative divergence strongly depends on the geographical relationship of species. Between allopatric species, male courtship and female copulation preferences diverged at very similar rates, evolving approximately linearly with time of divergence. In sharp contrast, between sympatric species pairs, female preferences diverged much more rapidly than male preferences and were the only drivers of enhanced sexual isolation in sympatry and Reproductive Character Displacement (RCD). Not only does this result suggest that females are primarily responsible for such processes as reinforcement, but it also implies that evolved female preferences may reduce selection for further divergence of male courtship preferences in sympatry.  相似文献   

9.
1. Although divergence via host‐plant shifting is a common theme in the speciation of some phytophagous insects, it is not clear whether host shifts are typically initiators of speciation or if they instead contribute to divergence events already in progress. While host shifts appear to be generally associated with speciation events for flies in the genus Strauzia, three sympatric varieties of the sunflower fly [Strauzia longipennis (Wiedemann)] co‐occur on the same host plant in the Midwestern United States and may have evolved reproductive barriers without a host shift. 2. The strength of two prezygotic reproductive barriers was compared among the three S. longipennis varieties: one barrier that is often associated with divergent ecological selection (allochronic isolation), and another that is more likely to be independent of ecological selection (pre‐copulatory sexual isolation). The presence and relative strength of each barrier between fly varieties were evaluated using microsatellites, no choice mating experiments, studies of allochronic isolation, and field collection data. 3. Evidence for both allochronic isolation and pre‐copulatory sexual isolation was detected between the three varieties of S. longipennis. The measure of isolation calculated for each barrier between the three varieties was lower than measures calculated between different species of Strauzia found on different hosts, suggesting that subsequent host shifts may increase the degree of reproductive isolation. For Strauzia and other specialist insects, some reproductive isolation may evolve prior to, and indeed may facilitate, host shifts.  相似文献   

10.
In sex‐role‐reversed species, sexual selection acts more strongly on females than on males, a situation that can result in the evolution of secondary sexual traits in females and strong mating preferences in males. While some research exploring mating preferences in sex‐role‐reversed species has been conducted, overall, this topic remains relatively unexplored. The Gulf pipefish, Syngnathus scovelli, is a highly polyandrous pipefish species. Sexual selection is significantly stronger in females than in males, which has led to the evolution of both morphological and behavioral female secondary sexual traits. However, because males gestate the offspring in specialized pouches and make a substantial investment in embryos during development, females may also benefit from being choosy. The goal of this study was to examine both male and female mating preferences in this species. We found that male mating preference was significantly associated with female courtship behavior. Larger females were also able to maintain these behaviors for longer intervals than smaller females. No evidence of female mating preference in regard to male size was observed but the data suggest that male behaviors may be providing positive reinforcement to courting females. This research provides further insight into how mate preferences vary among sex‐role‐reversed species.  相似文献   

11.
Abstract Many studies of speciation rely critically on estimates of sexual isolation obtained in the laboratory. Here we examine the sensitivity of sexual isolation to alterations in experimental design and mating environment in two sister species of Drosophila, D. santomea and D. yakuba. We use a newly devised measure of mating frequencies that is able to disentangle sexual isolation from species differences in mating propensity. Variation in fly density, presence or absence of a quasi‐natural environment, degree of starvation, and relative frequency of species had little or no effect on sexual isolation, but one factor did have a significant effect: the possibility of choice. Designs that allowed flies to choose between conspecific and heterospecific mates showed significantly more sexual isolation than other designs that did not allow choice. These experiments suggest that sexual isolation between these species (whose ranges overlap on the island of STo Tomé) is due largely to discrimination against D. yakuba males by D. santomea females. This suggestion was confirmed by direct observations of mating behavior. Drosophila santomea males also court D. yakuba females less ardently than conspecific females, whereas neither males nor females of D. yakuba show strong mate discrimination. Thus, sexual isolation appears to be a result of evolutionary changes in the derived island endemic D. santomea. Surprisingly, as reported in a companion paper (Llopart et al. 2005), the genotypes of hybrids found in nature do not accord with expectations from these laboratory studies: all F1 hybrids in nature come from matings between D. santomea females and D. yakuba males, matings that occur only rarely in the laboratory.  相似文献   

12.
Sexual isolation, the reduced tendency to mate, is one of the reproductive barriers that prevent gene flow between different species. Various species‐specific signals during courtship contribute to sexual isolation between species. Drosophila albomicans and D. nasuta are closely related species of the nasuta subgroup within the Drosophila immigrans group and are distributed in allopatry. We analyzed mating behavior and courtship as well as cuticular hydrocarbon profiles within and between species. Here, we report that these two species randomly mated with each other. We did not observe any sexual isolation between species or between strains within species by multiple‐choice tests. Significant difference in the courtship index was detected between these two species, but males and females of both species showed no discrimination against heterospecific partners. Significant quantitative variations in cuticular hydrocarbons between these two species were also found, but the cuticular hydrocarbons appear to play a negligible role in both courtship and sexual isolation between these two species. In contrast to the evident postzygotic isolation, the lack of sexual isolation between these two species suggests that the evolution of premating isolation may lag behind that of the intergenomic incompatibility, which might be driven by intragenomic conflicts.  相似文献   

13.
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures – apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.  相似文献   

14.
Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called “magic traits” for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short‐distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation.  相似文献   

15.
The Lake Victoria 'species flock' of cichlids is puzzling because reproductive isolation often occurs in the absence of substantial ecological differences among species. Theory predicts that this cannot evolve with most genetic mechanisms for mate choice. We provide the first evidence that learning, in the form of sexual imprinting, helps maintain reproductive isolation among closely related cichlid species. Using a cross-fostering experiment, we show that young females develop a sexual preference for males of their foster mothers' species, even reversing species assortative mating preferences. We suggest that learning creates favourable conditions for reproductive isolation to evolve.  相似文献   

16.
It is widely accepted that the genetic divergence and reproductive incompat- ibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Co- laphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating ex- periments, the percentages ofmatings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (/) and index of pair sexual isolation (/PSi) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermedi- ate in heterotypic rnatings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.  相似文献   

17.
Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black‐capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography–mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y‐maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation.  相似文献   

18.
Rapid speciation in Lake Victoria cichlid fish of the genus Pundamilia may be facilitated by sexual selection: female mate choice exerts sexual selection on male nuptial coloration within species and maintains reproductive isolation between species. However, declining water transparency coincides with increasingly dull coloration and increasing hybridization. In the present study, we investigated the mechanism underlying this pattern in Pundamilia nyererei, a species that interbreeds with a sister species in turbid but not in clear water. We compared measures of intraspecific sexual selection between two populations from locations that differ in water transparency. First, in laboratory mate‐choice experiments, conducted in clear water and under broad‐spectrum illumination, we found that females originating from turbid water have significantly weaker preferences for male coloration than females originating from clear water. Second, both the hue and body coverage of male coloration differ between populations, which is consistent with adaptation to different photic habitats. These findings suggest that the observed relationship between male coloration and water transparency is not mediated by environmental variation alone. Rather, female mating preferences are indicated to have changed in response to this variation, constituting the first evidence for intraspecific preference‐trait co‐evolution in cichlid fish. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 398–406.  相似文献   

19.
Sexual selection theory suggests that females may gain significant indirect fitness benefits from mating with males expressing good genes, particularly in animal species where the males provide no parental care. Whole‐organism performance abilities have previously been shown to enhance both survival and reproductive success in a range of taxa, and females who mate with high‐performance males might therefore gain significant indirect performance benefits. We tested the hypothesis that females associate preferentially with high‐performance males in the green anole lizard Anolis carolinensis in laboratory trials using multivariate statistical techniques. Our results indicate that male performance abilities do not influence female mating preferences, either in isolation or as a combined suite of traits. Thus, any indirect performance benefits that a female might gain for her offspring are likely not a result of a female choice process.  相似文献   

20.
The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne‐pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne‐pollen was determined by single‐pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne‐pollen showed that the two pine species, particularly P. pumila, still have chances to form F1 hybrid seeds. Both parental species showed a strong assortative mating pattern; F1 seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross‐incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross‐incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号