首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   

2.
Many traits have been linked to extinction risk among modern vertebrates, including mode of life and body size. However, previous work has indicated there is little evidence that body size, or any other trait, was selective during past mass extinctions. Here, we investigate the impact of the Triassic–Jurassic mass extinction on early Archosauromorpha (basal dinosaurs, crocodylomorphs and their relatives) by focusing on body size and other life history traits. We built several new archosauromorph maximum‐likelihood supertrees, incorporating uncertainty in phylogenetic relationships. These supertrees were then employed as a framework to test whether extinction had a phylogenetic signal during the Triassic–Jurassic mass extinction, and whether species with certain traits were more or less likely to go extinct. We find evidence for phylogenetic signal in extinction, in that taxa were more likely to become extinct if a close relative also did. However, there is no correlation between extinction and body size, or any other tested trait. These conclusions add to previous findings that body size, and other traits, were not subject to selection during mass extinctions in closely‐related clades, although the phylogenetic signal in extinction indicates that selection may have acted on traits not investigated here.  相似文献   

3.
Ray‐finned fishes (Actinopterygii) constitute approximately half of all living vertebrate species. A stable hypothesis of relationships among major modern lineages has emerged over the past decade, supported by both anatomy and molecules. Diversity is unevenly partitioned across the actinopterygian tree, with most species concentrated within a handful of geologically young (i.e. Cretaceous) teleost clades. Extant non‐teleost groups are portrayed as ‘living fossils’, but this moniker should not be taken as evidence of especially primitive structure: each of these lineages is characterized by profound specializations. Attribution of fossils to the crowns and apical stems of Cladistia, Chondrostei and Neopterygii is uncontroversial, but placements of Palaeozoic taxa along deeper branches of actinopterygian phylogeny are less secure. Despite these limitations, some major outlines of actinopterygian diversification seem reasonably clear from the fossil record: low richness and disparity in the Devonian; elevated morphological variety, linked to increases in taxonomic dominance, in the early Carboniferous; and further gains in taxonomic dominance in the Early Triassic associated with earliest appearance of trophically diverse crown neopterygians.  相似文献   

4.
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   

5.

Stable carbon isotope data from brachiopod shells from the Upper Permian Kapp Starostin Formation (West Spitsbergen) indicate that the oceanic carbon isotopic ratio, which had already been very high in the late Permian, rapidly increased by almost 4 per mil and then dramatically declined by more than 10 per mil in the very latest Permian. This pattern is essentially repeated by the oxygen isotope curve. These data show that a geologically rapid switch between two fundamentally different states of the Earth's exosystem occurred near the Permo‐Triassic transition. The late Permian state of the global system was profoundly different from the modern one in that vast amounts of organic carbon were stored, presumably in the form of easy‐to‐mobilize sapropel‐like deposits, below the oceanic redoxcline. Under such conditions—which we propose to call overfed ocean—nutrients were intensely recycled to seawater, thus allowing the ocean to sustain a huge standing crop of the biosphere. Deposition of large amounts of organic carbon in the ocean liberated corresponding amounts of oxygen, thus leading to high oxygen levels in the atmosphere. In the latest Permian, the organic matter decaying in the ocean was subject to rapid oxidation due to appearance of the modern type of ocean which is characterized by vigorous bottom circulation and net heterotrophy. The appearance of these conditions—which we propose to call hungry ocean—led to removal of nutrients from seawater and to a substantial drop in atmospheric oxygen contents. The resulting nutrient deficiency in the ocean, oxygen depletion in the atmosphere, and other effects of this paleoceanographic change must have caused major extinctions.  相似文献   

6.
Abstract: The Parareptilia are a small but ecologically and morphologically diverse clade of Permian and Triassic crown amniotes generally considered to be phylogenetically more proximal to eureptiles (diapsids and their kin) than to synapsids (mammals and their kin). A recent supertree provides impetus for an analysis of parareptile diversity through time and for examining the influence of the end‐Permian mass extinction on the clade’s origination and extinction rates. Phylogeny‐corrected measures of diversity have a significant impact on both rates and the distribution of origination and extinction intensities. Time calibration generally results in a closer correspondence between origination and extinction rate values than in the case of no time correction. Near the end‐Permian event, extinction levels are not significantly higher than origination levels, particularly when time calibration is introduced. Finally, regardless of time calibration and/or phylogenetic correction, the distribution of rates does not differ significantly from unimodal. The curves of rate values are discussed in the light of the numbers and distributions of both range extensions and ghost lineages. The disjoint time distributions of major parareptile clades (e.g. procolophonoids and nycteroleterids‐pareiasaurs) are mostly responsible for the occurrence of long‐range extensions throughout the Permian. Available data are not consistent with a model of sudden decline at the end‐Permian but rather suggest a rapid alternation of originations and extinctions in a number of parareptile groups, both before and after the Permian/Triassic boundary.  相似文献   

7.
Unlike modern mammalian communities, terrestrial Paleozoic and Mesozoic vertebrate systems were characterized by carnivore faunas that were as diverse as their herbivore faunas. The comparatively narrow food base available to carnivores in these paleosystems raises the possibility that predator–prey interactions contributed to unstable ecosystems by driving populations to extinction. Here, we develop a model of predator–prey interactions based on diversity, abundance and body size patterns observed in the Permo‐Triassic vertebrate fossil record of the Karoo Basin, South Africa. Our simulations reflect empirical evidence that despite relatively high carnivore: herbivore species ratios, herbivore abundances were sufficient for carnivores to maintain required intake levels through most of the Karoo sequence. However, high mortality rates amongst herbivore populations, even accounting for birth rates of different‐sized species, are predicted for assemblages immediately preceding the end‐Guadalupian and end‐Permian mass extinctions, as well as in the Middle Triassic when archosaurs replaced therapsids as the dominant terrestrial fauna. These results suggest that high rates of herbivore mortality could have played an important role in biodiversity declines leading up to each of these turnover events. Such declines would have made the systems especially vulnerable to subsequent stochastic events and environmental perturbations, culminating in large‐scale extinctions.  相似文献   

8.
The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle–late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction.  相似文献   

9.
Mass extinctions have profoundly influenced the history of life, not only through the death of species but also through changes in ecosystem function and structure. Importantly, these events allow us the opportunity to study ecological dynamics under levels of environmental stress for which there are no recent analogues. Here, we examine the impact and selectivity of the Late Triassic mass extinction event on the functional diversity and functional composition of the global marine ecosystem, and test whether post‐extinction communities in the Early Jurassic represent a regime shift away from pre‐extinction communities in the Late Triassic. Our analyses show that, despite severe taxonomic losses, there is no unequivocal loss of global functional diversity associated with the extinction. Even though no functional groups were lost, the extinction event was, however, highly selective against some modes of life, in particular sessile suspension feeders. Although taxa with heavily calcified skeletons suffered higher extinction than other taxa, lightly calcified taxa also appear to have been selected against. The extinction appears to have invigorated the already ongoing faunal turnover associated with the Mesozoic Marine Revolution. The ecological effects of the Late Triassic mass extinction were preferentially felt in the tropical latitudes, especially amongst reefs, and it took until the Middle Jurassic for reef ecosystems to fully recover to pre‐extinction levels.  相似文献   

10.
Aim To evaluate the influence of geographical distribution on the extinction risk of benthic marine invertebrates using data from the fossil record, both during times of background extinction and across a mass‐extinction episode. Total geographical range is contrasted with proxies of global abundance to assess the relationships between the two essential components of geographical distribution and extinction risk. Location A global occurrence data base of fossil benthic macro‐organisms from the Triassic and Jurassic periods was used for this study. Methods Geographical distributions and biodiversity dynamics were assessed for each genus (all taxa) or species (bivalves) based on a sample‐standardized data set and palaeogeographical reconstructions. Geographical ranges were measured by the maximum great circle distance of a taxon within a stratigraphic interval. Global abundance was assessed by the number of localities at which a taxon was recorded. Widespread and rare taxa were separated using median and percentile values of the frequency distributions of occurrences. Results The frequency distribution of geographical ranges is very similar to that for modern taxa. Although no significant correlation could be established between local abundance and geographical range, proxies of global abundance are strongly correlated with geographical range. Taxon longevities are correlated with both mean geographical range and mean global abundance, but range size appears to be more critical than abundance in determining extinction risk. These results are valid when geographical distribution is treated as a trait of taxa and when assessed for individual geological stages. Main conclusions Geographical distribution is a key predictor of extinction risk of Triassic and Jurassic benthic marine invertebrates. An important exception is in the end‐Triassic mass extinction, which equally affected geographically restricted and widespread genera, as well as common and rare genera. This suggests that global diversity crises may curtail the role of geographical distribution in determining extinction risk.  相似文献   

11.
Non‐avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long‐term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long‐term decline across non‐avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large‐bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult.  相似文献   

12.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

13.
A new galesaurid cynodont, Progalesaurus lootsbergensis gen. et sp. nov., is described on the basis of a well-preserved skull, lower jaw, right scapula and left atlantal neural arch. Autapomorphies of Progalesaurus include postcanine teeth bearing numerous mesial and distal accessory cusps that flank a recurved main cusp, a post-temporal fenestra bordered by the squamosal ventrally and a large external naris. Progalesaurus is similar to Galesaurus in possessing a poorly defined masseteric fossa on the dentary, a strongly recurved main cusp of the postcanine dentition, an incomplete secondary palate and a similar basisphenoid-parasphenoid morphology. A cladistic analysis of ten early cynodont genera resolves a monophyletic Galesauridae encompassing Cynosaurus , Progalesaurus and Galesaurus , although support for this clade is weak. Procynosuchus and Dvinia are placed at the base of Cynodontia whereas Thrinaxodon and Platycraniellus are positioned higher, but outside of Eucynodontia. The holotype and only known specimen of Progalesaurus was collected during systematic prospecting of Permo/Triassic boundary strata at New Lootsberg Pass, Graaff-Reinet District, South Africa. The discovery of Progalesaurus increases the number of valid Early Triassic cynodonts to four and sheds light on the tempo of early cynodont diversification after the end-Permian mass extinction.  相似文献   

14.
Mass extinction events (MEEs), defined as significant losses of species diversity in significantly short time periods, have attracted the attention of biologists because of their link to major environmental change. MEEs have traditionally been studied through the fossil record, but the development of birth‐death models has made it possible to detect their signature based on extant‐taxa phylogenies. Most birth‐death models consider MEEs as instantaneous events where a high proportion of species are simultaneously removed from the tree (“single pulse” approach), in contrast to the paleontological record, where MEEs have a time duration. Here, we explore the power of a Bayesian Birth‐Death Skyline (BDSKY) model to detect the signature of MEEs through changes in extinction rates under a “time‐slice” approach. In this approach, MEEs are time intervals where the extinction rate is greater than the speciation rate. Results showed BDSKY can detect and locate MEEs but that precision and accuracy depend on the phylogeny's size and MEE intensity. Comparisons of BDSKY with the single‐pulse Bayesian model, CoMET, showed a similar frequency of Type II error and neither model exhibited Type I error. However, while CoMET performed better in detecting and locating MEEs for smaller phylogenies, BDSKY showed higher accuracy in estimating extinction and speciation rates.  相似文献   

15.
The timing of recovery after the end‐Permian mass extinction has been a matter of debate, with some authors favouring a more rapid faunal recovery during the Early Triassic and others considering a more protracted biotic reestablishment spanning until the Middle Triassic. In this work, we investigated the lowermost Middle Triassic (Ladinian) carbonate deposits in the Catalan Basin to evaluate the potential environmental mechanisms and evolutionary constrains involved in the kilometre‐scale predominance of microbialites and the low‐diversity and high‐density Planolites association in a low‐latitude epicontinental setting. The studied sedimentary succession records the development from a low‐gradient, homoclinal microbial‐dominated carbonate ramp evolving towards a slightly inclined swell‐dominated type. Sedimentological analysis suggests that facies heterogeneity was controlled by pulses of syn‐rift tectonic activity, which compromised Peri‐Tethyan basin connectivity, reducing palaeobathymetry gradients. Although the monospecific nature of the studied trace‐fossil association may reflect the delayed recovery after the end‐Permian mass extinction, this is inconsistent with widespread, relatively high‐diversity ichnofaunas in carbonates elsewhere in the region. Since other Ladinian basins were characterized by the recurrence of microbial carbonates, low‐diversity ichnoassemblages and limited skeletal production, we hypothesize that shallow and restricted carbonate ramp settings harboured limited ecological complexity and widespread opportunistic colonization of the sediment when compared to coeval open marine locations.  相似文献   

16.
The end-Triassic biodiversity crisis was one of the most severe mass extinctions in the history of animal life. However, the extent to which the loss of taxonomic diversity was coupled with a reduction in organismal abundance remains to be quantified. Further, the temporal relationship between organismal abundance and local marine redox conditions is lacking in carbonate sections. To address these questions, we measured skeletal grain abundance in shallow-marine limestones by point counting 293 thin sections from four stratigraphic sections across the Triassic/Jurassic boundary in the Lombardy Basin and Apennine Platform of western Tethys. Skeletal abundance decreased abruptly across the Triassic/Jurassic boundary in all stratigraphic sections. The abundance of skeletal organisms remained low throughout the lower-middle Hettangian strata and began to rebound during the late Hettangian and early Sinemurian. A two-way ANOVA indicates that sample age (p < .01, η2 = 0.30) explains more of the variation in skeletal abundance than the depositional environment or paleobathymetry (p < .01, η2 = 0.15). Measured I/Ca ratios, a proxy for local shallow-marine redox conditions, show this same pattern with the lowest I/Ca ratios occurring in the early Hettangian. The close correspondence between oceanic water column oxygen levels and skeletal abundance indicates a connection between redox conditions and benthic organismal abundance across the Triassic/Jurassic boundary. These findings indicate that the end-Triassic mass extinction reduced not only the biodiversity but also the carrying capacity for skeletal organisms in early Hettangian ecosystems, adding to evidence that mass extinction of species generally leads to mass rarity among survivors.  相似文献   

17.
The end‐Cretaceous mass extinction ranks among the most severe extinctions of all time; however, patterns of extinction and recovery remain incompletely understood. In particular, it is unclear how severe the extinction was, how rapid the recovery was and how sampling biases might affect our understanding of these processes. To better understand terrestrial extinction and recovery and how sampling influences these patterns, we collected data on the occurrence and abundance of fossil mammals to examine mammalian diversity across the K‐Pg boundary in North America. Our data show that the extinction was more severe and the recovery more rapid than previously thought. Extinction rates are markedly higher than previously estimated: of 59 species, four survived (93% species extinction, 86% of genera). Survival is correlated with geographic range size and abundance, with widespread, common species tending to survive. This creates a sampling artefact in which rare species are both more vulnerable to extinction and less likely to be recovered, such that the fossil record is inherently biased towards the survivors. The recovery was remarkably rapid. Within 300 000 years, local diversity recovered and regional diversity rose to twice Cretaceous levels, driven by increased endemicity; morphological disparity increased above levels observed in the Cretaceous. The speed of the recovery tends to be obscured by sampling effects; faunas show increased endemicity, such that a rapid, regional increase in diversity and disparity is not seen in geographically restricted studies. Sampling biases that operate against rare taxa appear to obscure the severity of extinction and the pace of recovery across the K‐Pg boundary, and similar biases may operate during other extinction events.  相似文献   

18.
Diversity dynamics among bivalves during the Triassic and Early Jurassic provides the opportunity to analyse the recovery patterns after two mass extinctions: Permian/Triassic and Triassic/Jurassic (T/J). The results presented here are based on a newly compiled worldwide genus-level database and are contrasted to the main morphological characters of the different taxonomical (orders and their constituent families and genera) and ecological groups. Many of such morphological characters are innovations appearing during the time span considered. Diversity and evolutionary rates were assessed and compared between these groups. During the Early Triassic there was a slow recovery, dominated by epifaunal taxa, the order Pectinida being the most diverse. The major post-Permian radiation took place during the Anisian, with several morphological and ecological innovations appearing and/or diversifying. The Late Triassic was a time of great diversification and ecological specialisation. Although the T/J was a true mass extinction for bivalves, it was not indiscriminate as its impact was stronger on specialised orders and not all ecological categories were equally affected. Recovery during earliest Jurassic was fast, confirming the high-evolutionary resilience of bivalve molluscs, except for groups with thick shells and tropical distribution, probably because of a biocalcification crisis.  相似文献   

19.
Extinction risk in the modern world and extinction in the geological past are often linked to aspects of life history or other facets of biology that are phylogenetically conserved within clades. These links can result in phylogenetic clustering of extinction, a measurement comparable across different clades and time periods that can be made in the absence of detailed trait data. This phylogenetic approach is particularly suitable for vertebrate taxa, which often have fragmentary fossil records, but robust, cladistically‐inferred trees. Here we use simulations to investigate the adequacy of measures of phylogenetic clustering of extinction when applied to phylogenies of fossil taxa while assuming a Brownian motion model of trait evolution. We characterize expected biases under a variety of evolutionary and analytical scenarios. Recovery of accurate estimates of extinction clustering depends heavily on the sampling rate, and results can be highly variable across topologies. Clustering is often underestimated at low sampling rates, whereas at high sampling rates it is always overestimated. Sampling rate dictates which cladogram timescaling method will produce the most accurate results, as well as how much of a bias ancestor–descendant pairs introduce. We illustrate this approach by applying two phylogenetic metrics of extinction clustering (Fritz and Purvis's D and Moran's I) to three tetrapod clades across an interval including the Permo‐Triassic mass extinction event. These groups consistently show phylogenetic clustering of extinction, unrelated to change in other quantitative metrics such as taxonomic diversity or extinction intensity.  相似文献   

20.
The end‐Triassic mass extinction (c. 201.6 Ma) was one of the five largest mass‐extinction events in the history of animal life. It was also associated with a dramatic, long‐lasting change in sedimentation style along the margins of the Tethys Ocean, from generally organic‐matter‐poor sediments during the Triassic to generally organic‐matter‐rich black shales during the Jurassic. New core material from Germany provides biomarker evidence of persistent photic‐zone euxinia during the Hettangian, the onset of which is associated with a series of both negative and positive carbon isotope excursions. Combined inorganic and organic geochemical and micropalaeontological analyses reveal strong similarities between the Hettangian and the better‐known Toarcian anoxic event. These events appear to be the most clearly expressed events within a series of anoxic episodes that also include poorly studied black shale intervals during the Sinemurian and Pliensbachian. Both the Hettangian and Toarcian events are marked by important changes in phytoplankton assemblages from chromophyte‐ to chlorophyte‐dominated assemblages within the European Epicontinental Seaway. Phytoplankton changes occurred in association with the establishment of photic‐zone euxinia, driven by a general increase in salinity stratification and warming of surface waters. For both events, the causes of large negative carbon isotope excursions remain incompletely understood; evidence exists for both variation in the δ13C of atmospheric CO2 and variation in the sources of organic carbon. Regardless of the causes of δ13C variability, long‐term ocean anoxia during the Early Jurassic can be attributed to greenhouse warming and increased nutrient delivery to the oceans triggered by flood basalt volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号