首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animals often exhibit consistent individual differences in behavior (i.e., animal personality) and correlations between behaviors (i.e., behavioral syndromes), yet the causes of those patterns of behavioral variation remain insufficiently understood. Many authors hypothesize that state‐dependent behavior produces animal personality and behavioral syndromes. However, empirical studies assessing patterns of covariation among behavioral traits and state variables have produced mixed results. New statistical methods that partition correlations into between‐individual and residual within‐individual correlations offer an opportunity to more sufficiently quantify relationships among behaviors and state variables to assess hypotheses of animal personality and behavioral syndromes. In a population of wild Belding's ground squirrels (Urocitellus beldingi), we repeatedly measured activity, exploration, and response to restraint behaviors alongside glucocorticoids and nutritional condition. We used multivariate mixed models to determine whether between‐individual or within‐individual correlations drive phenotypic relationships among traits. Squirrels had consistent individual differences for all five traits. At the between‐individual level, activity and exploration were positively correlated whereas both traits negatively correlated with response to restraint, demonstrating a behavioral syndrome. At the within‐individual level, condition negatively correlated with cortisol, activity, and exploration. Importantly, this indicates that although behavior is state‐dependent, which may play a role in animal personality and behavioral syndromes, feedback mechanisms between condition and behavior appear not to produce consistent individual differences in behavior and correlations between them.  相似文献   

2.
Synopsis We analyzed feeding behavior of individuals of Herichthys minckleyi, the Cuatro Ciénegas cichlid, under laboratory conditions and freely behaving in their natural environment using high-speed video imaging. In a multivariate analysis of suction feeding behaviors there was no clear grouping of feeding events based on the environment, which suggests that most of the variability in the data was unrelated to differences between lab and field behaviors. In fact, the variability within an environment was far greater than the variability between the two environments. These results suggest that laboratory studies can accurately describe the kinematics of behaviors seen in the field. However, although lab based studies can quantify behaviors seen in the field, natural habitats are complex and provide individuals with the opportunity to exploit a wide range of food types and microhabitats, which may elicit behaviors not observed in the laboratory. However, feeding behaviors observed in the lab are representative of frequently used feeding behaviors in the field, at least for this species. Thus, we suggest that laboratory studies of feeding behavior, particularly those that test biomechanical or performance-based hypotheses can be extrapolated to natural environments.  相似文献   

3.
Telemetry System for Assessing Jaw-Muscle Function in Free-ranging Primates   总被引:1,自引:1,他引:0  
In vivo laboratory-based studies describing jaw-muscle activity and mandibular bone strain during mastication provide the empirical basis for most evolutionary hypotheses linking primate masticatory apparatus form to diet. However, the laboratory data pose a potential problem for testing predictions of these hypotheses because estimates of masticatory function and performance recorded in the laboratory may lack the appropriate ecological context for understanding adaptation and evolution. For example, in laboratory studies researchers elicit rhythmic chewing using foods that may differ significantly from the diets of wild primates. Because the textural and mechanical properties of foods influence jaw-muscle activity and the resulting strains, chewing behaviors studied in the laboratory may not adequately reflect chewing behaviors of primates feeding in their natural habitats. To circumvent this limitation of laboratory-based studies of primate mastication, we developed a system for recording jaw-muscle electromyograms (EMGs) from free-ranging primates so that researchers can conduct studies of primate jaw-muscle function in vivo in the field. We used the system to record jaw-muscle EMGs from mantled howlers (Alouatta palliata) at Hacienda La Pacifica, Costa Rica. These are the first EMGs recorded from a noncaptive primate feeding in its natural habitat. Further refinements of the system will allow long-term EMG data collection so that researchers can correlate jaw-muscle function with food mechanical properties and behavioral observations. In addition to furthering understanding of primate feeding biology, our work will foster improved adaptive hypotheses explaining the evolution of primate jaw form.  相似文献   

4.
Adey  Amaryllis K.  Larson  Eric R. 《Hydrobiologia》2020,847(7):1587-1602

Laboratory behavioral experiments are an important tool in ecology and evolution, but whether these behaviors reflect the field function of organisms is not always clear. Directly connecting laboratory behaviors to field interactions would increase understanding of a variety of organisms. A recent study proposed using stable isotopes to link laboratory behaviors to field function of individuals, but failed to find any such links within a population of the invasive rusty crayfish Faxonius rusticus (Girard, 1852). Here, we assessed whether methodological decisions around tissue analyzed for stable isotopes, laboratory acclimation time, and timing of primary consumer collection may have affected the result, hypothesizing that more dominant crayfish would have higher trophic positions and tissue with faster turnover rates may exhibit a stronger association between laboratory behavior and recent field function. We tested this relationship using F. rusticus individuals from a single population, and related laboratory dominance to stable isotope-derived trophic position using linear regression. We failed to find a relationship between dominance and trophic position, regardless of our different methodologies. Future studies should consider alternative behaviors that may better relate to function in the field and also investigate whether laboratory behavior and field function are related between, rather than within, populations or species.

  相似文献   

5.
The complexity of natural environments is an important component of animal behavior, and laboratory environments often cannot reproduce that complexity. Strike‐induced chemosensory searching (SICS) is a robust phenomenon among venomous snakes that has been studied extensively in the laboratory. To date, observations of this behavior in the field have been limited largely to anecdotes; the extent to which post‐strike behaviors in the laboratory accurately reflect what occurs in nature has not been examined. In this study, I use time‐lapse video equipment in the field to record the predatory behavior of timber rattlesnakes (Crotalus horridus). This represents the first quantitative analysis of post‐strike predatory behaviors associated with natural feeding events. As in the laboratory, stereotyped post‐strike behaviors were only observed after successful strikes, and not after missed strikes. Snakes in the field were observed to proceed through the same basic behavioral stages that have been documented in the laboratory: striking prey, releasing prey immediately after strike, post‐strike immobility, location of the chemosensory trail, trail following, and prey swallowing. However, the duration of post‐strike immobility, trail location, and prey swallowing was substantially longer in field than in laboratory studies. Additionally, post‐strike immobility was significantly longer when snakes struck large prey (prey over 100 g) than when they struck small prey. Overall, these results indicate that the behavioral challenges associated with SICS may be more robust than laboratory studies have indicated.  相似文献   

6.
There is much interest in studying animal personalities but considerable debate as to how to define and evaluate them. We assessed the utility of one proposed framework while studying personality in terrestrial hermit crabs (Coenobita clypeatus). We recorded the latency of individuals to emerge from their shells over multiple trials in four unique manipulations. We used the specific testing situations within these manipulations to define two temperament categories (shyness-boldness and exploration-avoidance). Our results identified individual behavioral consistency (i.e., personality) across repeated trials of the same situations, within both categories. Additionally, we found correlations between behaviors across contexts (traits) that suggested that the crabs had behavioral syndromes. While we found some correlations between behaviors that are supposed to measure the same temperament trait, these correlations were not inevitable. Furthermore, a principal component analysis (PCA) of our data revealed new relationships between behaviors and provided the foundation for an alternate interpretation: measured behaviors may be situation-specific, and may not reflect general personality traits at all. These results suggest that more attention must be placed on how we infer personalities from standardized methods, and that we must be careful to not force our data to fit our frameworks.  相似文献   

7.
Directly viewing soil-dwelling entomopathogenic and plant-parasitic nematodes in situ is difficult, if not impossible. As a result, researchers have developed a diverse array of bioassays which assess nematode behavioral traits within arenas designed to simulate various aspects of the natural habitat. However, reliably rendering what we can see in the laboratory into accurate predictions of how nematodes achieve their objectives in the field is challenging. In the current review, we systemically assessed the goals and attributes of several of the assays most commonly used to investigate nematode host finding and host invasion behavior. By illuminating the relative strengths and limitations of each assay, we hope to improve our ability to develop meaningful predictions for the field.  相似文献   

8.
Understanding habitat selection and movement remains a key question in behavioral ecology. Yet, obtaining a sufficiently high spatiotemporal resolution of the movement paths of organisms remains a major challenge, despite recent technological advances. Observing fine-scale movement and habitat choice decisions in the field can prove to be difficult and expensive, particularly in expansive habitats such as wetlands. We describe the application of passive integrated transponder (PIT) systems to field enclosures for tracking detailed fish behaviors in an experimental setting. PIT systems have been applied to habitats with clear passageways, at fixed locations or in controlled laboratory and mesocosm settings, but their use in unconfined habitats and field-based experimental setups remains limited. In an Everglades enclosure, we continuously tracked the movement and habitat use of PIT-tagged centrarchids across three habitats of varying depth and complexity using multiple flatbed antennas for 14 days. Fish used all three habitats, with marked species-specific diel movement patterns across habitats, and short-lived movements that would be likely missed by other tracking techniques. Findings suggest that the application of PIT systems to field enclosures can be an insightful approach for gaining continuous, undisturbed and detailed movement data in unconfined habitats, and for experimentally manipulating both internal and external drivers of these behaviors.  相似文献   

9.
Individuals from the same population generally vary in suites of correlated behavioral traits: personality. Yet, the strength of the behavioral correlations sometimes differs among populations and environmental conditions, suggesting that single underlying mechanisms, such as genetic constraints, cannot account for them. We propose, instead, that such suites of correlated traits may arise when a single key behavior has multiple cascading effects on several other behaviors through affecting the range of options available. For instance, an individual's shyness can constrain its habitat choice, which, in turn, could restrict the expression of other behavioral traits. We hypothesize that shy individuals should be especially restrained in their choice of habitat when the risk of predation is high, which then canalizes them into different behavioral options making them appear behaviorally distinct from bolder individuals. We test this idea using an individual‐based simulation model. Our results show that individual differences in boldness can be sufficient, under high predation pressure, to generate behavioral correlations between boldness and both the tendency to aggregate and the propensity to use social information. Thus, our findings support the idea that some behavioral syndromes can be, at least to some extent, labile. Our model further predicts that such cascading effects should be more pronounced in populations with a long history of predation, which are expected to exhibit a low average boldness level, compared with predator‐naïve populations.  相似文献   

10.
A behavioral syndrome is a suite of correlated behaviors expressed either within a given behavioral context (e.g., correlations between foraging behaviors in different habitats) or across different contexts (e.g., correlations among feeding, antipredator, mating, aggressive, and dispersal behaviors). For example, some individuals (and genotypes) might be generally more aggressive, more active or bold, while others are generally less aggressive, active or bold. This phenomenon has been studied in detail in humans, some primates, laboratory rodents, and some domesticated animals, but has rarely been studied in other organisms, and rarely examined from an evolutionary or ecological perspective. Here, we present an integrative overview on the potential importance of behavioral syndromes in evolution and ecology. A central idea is that behavioral correlations generate tradeoffs; for example, an aggressive genotype might do well in situations where high aggression is favored, but might be inappropriately aggressive in situations where low aggression is favored (and vice versa for a low aggression genotype). Behavioral syndromes can thereby result in maladaptive behavior in some contexts, and potentially maintain individual variation in behavior in a variable environment. We suggest terminology and methods for studying behavioral syndromes, review examples, discuss evolutionary and proximate approaches for understanding behavioral syndromes, note insights from human personality research, and outline some potentially important ecological implications. Overall, we suggest that behavioral syndromes could play a useful role as an integrative bridge between genetics, experience, neuroendocrine mechanisms, evolution, and ecology.  相似文献   

11.
Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small‐scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small‐scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.  相似文献   

12.
Measurements of the genetic variation and covariation underlying quantitative traits are crucial to our understanding of current evolutionary change and the mechanisms causing this evolution. This fact has spurred a large number of studies estimating heritabilities and genetic correlations in a variety of organisms. Most of these studies have been done in laboratory or greenhouse settings, but it is not well known how accurately these measurements estimate genetic variance and covariance expressed in the field. We conducted a quantitative genetic half-sibling analysis on six floral traits in wild radish. Plants were grown from seed in the field and were exposed to natural environmental variation throughout their lives, including herbivory and intra- and interspecific competition. The estimates of heritabilities and the additive genetic variance-covariance matrix (G) obtained from this analysis were then compared to previous greenhouse estimates of the same floral traits from the same natural population. Heritabilities were much lower in the field for all traits, and this was due to both large increases in environmental variance and decreases in additive genetic variance. Additive genetic covariance expressed was also much lower in the field. These differences resulted in highly significant differences in the G matrix between the greenhouse and field environments using two complementary testing methods. Although the G matrices shared some principal components in common, they were not simply proportional to each other. Therefore, the greenhouse results did not accurately depict how the floral traits would respond to natural selection in the field.  相似文献   

13.
14.
Jing J  Weiss KR 《Current biology : CB》2005,15(19):1712-1721
BACKGROUND: Most motor systems can generate a variety of behaviors, including categorically different behaviors and variants of a single motor act within the same behavioral category. Previous work indicated that many pattern-generating interneuronal networks may have a modular organization and that distinct categories of behaviors can be generated through flexible combinations of a small number of modules or building blocks. However, it is unclear whether and how a small number of modules could possibly generate a large number of variants of one behavior. RESULTS: We show that the modular feeding motor network of Aplysia mediates variations in protraction duration in biting-like programs. Two descending commands are active during biting behavior and trigger biting-like responses in a semiintact preparation. In the isolated CNS, when activated alone, the two commands produce biting-like programs of either long or short protraction duration by acting specifically on two modules that have opposite effects on protraction duration. More importantly, when coactivated at different frequencies, the two commands produce biting programs with an intermediate protraction duration. CONCLUSIONS: It was previously hypothesized that behavioral variants may be produced by combining different activity levels of multiple descending commands. Our data provide direct evidence for such a scheme and show how it is implemented in a modularly organized network. Thus, within a modular and hierarchical architecture, in addition to generating different categories of behavior, a small number of modules also efficiently implements variants of a single behavior.  相似文献   

15.
Examination of the form of the hip and thigh through discriminant function analysis of a series of 15 osteometric indices taken upon 289 specimens of 20 sets of leaping prosimians distinguishes four groups. Around a centrally located group of the various species of Lemur are three separate rays: one containing the three indriid genera (Propithecus, Indri, and Avahi), a second including the galagines and Tarsius, and a third comprising the two species of Cheirogaleus and the genus Microcebus. The lemurine genus Lepilemur lies intermediately between the central group of lemurs and the indriids. The lemurine genus Hapalemur lies intermediately between, on the one hand, the centrally located group of lemurs, and on the other, each of the two groups, cheirogaleines and galagines-plus-tarsiers. The arrangements of the particular species within each of these last two groups separately is from those that leap least to those that leap most. Given that the structure of the hip and thigh is related to the biomechanical demands of leaping, the existence of these separate morphological groups implies the existence of different biomechanical modes of leaping. Such meager taxonomic and behavioral information as is available seems to support this idea, although it is not impossible that other aspects of the behaviors of the animals may also be associated. This information sets up a series of new behavioral hypotheses that might be tested by better field and laboratory studies aimed more precisely at locomotion. And this information may be useful in helping to make assessments of particular fossils and in helping determine how various prosimian locomotor modes may have evolved.  相似文献   

16.
We present results from an ongoing field study conducted in Kansas grassland to examine correlates of invasibility and community stability along a natural gradient of plant diversity. Invasibility was evaluated by sowing seeds of 34 plant species into 40 experimental plots and then measuring colonization success after two growing seasons. Compositional stability, defined as resistance to change in species relative abundances over two growing seasons and in response to experimental disturbance, was measured in a separate set of 40 plots.
We found that community susceptibility to invasion was greatest in high diversity microsites within this grassland. Multiple regression analyses suggested that the positive correlation between invasibility and plant diversity was due to the direct influences of the extrinsic factors that contribute to spatial variation in diversity (soil disturbances; light availability), not to any direct impact of diversity. In addition, we found that compositional stability in response to disturbance was greatest within low diversity microsites and was strongly related to the dominance (evenness) component of diversity.  相似文献   

17.
Benoit SC  Tracy AL 《Peptides》2008,29(1):139-147
Recent conceptualizations of food intake have divided ingestive behavior into multiple distinct phases. Here, we present a temporally and operationally defined classification of ingestive behaviors. Importantly, various physiological signals including hypothalamic peptides are thought to impact these distinct behavioral phases of ingestion differently. In this review, we summarize a number of behavioral assays designed to delineate the effects of hormone and peptide signals that influence food intake on these ingestive mechanisms. Finally, we discuss two issues that we have encountered in our laboratory which may obstruct the interpretation of results from these types of studies. First, the influence of previous experience with foods used in these behavioral tests and second, the importance of the nutrient composition of the selected test foods. The important conclusion discussed here is that the behavioral analysis of ingestion is accompanied by theoretical constructs and artificial divisions of biological realities and the appreciation of this fact can only increase the opportunities of contemporary behavioral scientists to make significant and novel observations of ingestive behaviors.  相似文献   

18.
19.
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.  相似文献   

20.
From July 1997 to September 1997 and from March 1998 to July 1998, we studied reproductive behaviors of Père David's deer in Dafeng, China. During the field behavioral observations, we collected fresh voided fecal samples from the Père David's stags and hinds periodically and kept those samples under −20°C until laboratory analysis. We analyzed the fecal testosterone, estradiol, and progesterone concentrations in those samples using radioimmunoassay. During this study, we also recorded 17 types of male reproductive behaviors and nine types of female reproductive behaviors. Reproductive behaviors and the fecal steroid concentrations showed overt seasonal fluctuations. There were statistically significant correlations between some male reproductive behaviors, such as anogenital sniffing, urine sniffing, urine spraying, wallowing, bellowing, antler adorning, Antler swags mud, chasing, herding hinds, chin resting, mounting and copulating, with the fecal testosterone concentrations. These results suggested that seasonal reproductive behaviors in stags are strongly associated with circulating testosterone. We also found that some female reproductive behaviors fluctuate corresponding with changes in fecal estrogen concentrations. Although there was no direct evidence to confirm the correlations between female reproductive behaviors and fecal estrogen in our experiment, we could not rule out that reproductive activities of hinds were largely related to ovarian estrogen secretion, and estrogen is necessary for inducing female reproductive behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号