首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308   总被引:1,自引:0,他引:1  
The effects of nitrogen limitation and recovery on nitrogen-containing macromolecules were followed in the cyanobacterium Aphanocapsa 6308. Removal of nitrogen from growth media triggers the degradation of the endogenous nitrogen reserves phycocyanin and cyanophycin granule polypeptide in the cyanobacterium Aphanocapsa 6308. Nitrogen recovery involves immediate synthesis of cyanophycin granule polypeptide with peak levels of 5–12% of cell dry weight found 8–12 h after a utilizable nitrogen source is added. A rapid decrease in cyanophycin granule polypeptide level then occurs and the level remains low even in light-limited stationary growth with all nitrogen sources tested except nitrate and ammonia. Protein and phycocyanin recoveries began 3 h after a utilizable nitrogen source was added. Data suggest continuous activity of the enzyme system synthesizing cyanophycin granule polypeptide in nitrogen-limited cells, but synthesis of a degrading system only after nitrogen recovery begins.Nonstandard Abbreviations CGP Cyanophycin granule polypeptide - CAP chloramphenicol - PC phycocyanin To whom offprint requests should be sent  相似文献   

2.
A laboratory study was conducted on the removal of nitrogen and phosphorus from piggery wastewater during growth of Botryococcus braunii UTEX 572, together with measurements of hydrocarbon formation by the alga. The influence was tested of the initial nitrogen and phosphorus concentration on the optimum concentration range for a culture in secondarily treated piggery wastewater. A high cell density (> 7 g L–1 d. wt) was obtained with 510 mg L–1 NO3-N. Growth increased with nitrogen concentration at the basal phosphorus concentration (14 mg P L–1). The growth rate was nearly independent ( = 0.027 0.030 h–1) of the initial phosphate concentration, except under conditions of phosphate deficiency ( = 0.019 h–1). B. braunii grew well in piggery wastewater pretreated by a membrane bioreactor (MBR) with acidogenic fermentation. A dry cell weight of 8.5 mgL–1 and hydrocarbon level of 0.95 gL–1 were obtained, and nitrate was removed at a rate of 620 mg NL–1. These results indicate that pretreated piggery wastewater provides a good culture medium for the growth and hydrocarbon production by B. braunii.  相似文献   

3.
When Azotobacter chroococcum cells grown in batch culture under N2-fixing conditions were transferred to a medium lacking a nitrogen source, the cellular C/N ratio, the amount of alginic acid released into the external medium and the rate of endogenous respiration increased appreciably after 6 h to the exclusion of dinitrogen, whereas nitrogenase activity did not undergo any significant change. Nitrogen deficiency caused a decrease in the ammonium inhibition of nitrogenase activity from 95% inhibition at zero time to 14% after 6 h incubation under dinitrogen starvation, with no difference in the rate of ammonium utilization by N2-fixing and N2-starved cells being observed. This suggests that a balance of nitrogen and carbon assimilation is necessary for the ammonium inhibition of nitrogenase activity in A. chroococcum to take place.  相似文献   

4.
Plant nitrogen (N)deficiency often limits crop productivity. Early detection of plant N deficiency is important for improving fertilizer N-use efficiency and crop yield. An experiment was conducted in sunlit, controlled environment chambers in the 2001 growing season to determine responses of corn (Zea mays L. cv. 33A14) growth and leaf hyperspectral reflectance properties to varying N supply. Four N treatments were: (1) half-strength Hoagland's nutrient solution applied throughout the experiment (control); (2) 20% of control N starting 15 days after emergence (DAE); (3) 0% N starting 15 DAE; and (4) 0% N starting 23 DAE (0% NL). Plant height, the number of leaves, and leaf lengths were examined for nine plants per treatment every 3–4 days. Leaf hyperspectral reflectance, concentrations of chlorophyll a, chlorophyll b,and carotenoids, leaf and canopy photosynthesis, leaf area, and leaf N concentration were also determined during the experiment. The various N treatments led to a wide range of N concentrations (11 – 48 g kg–1 DW) in uppermost fully expanded leaves. Nitrogen deficiency suppressed plant growth rate and leaf photosynthesis. At final harvest (42 DAE), plant height, leaf area and shoot biomass were 64–66% of control values for the 20% N treatment, and 46-56% of control values for the 0% N treatment. Nitrogen deficit treatments of 20% N and 0% N (Treatment 3) could be distinguished by changes in leaf spectral reflectance in wavelengths of 552 and 710 nm 7 days after treatment. Leaf reflectance at these two wavebands was negatively correlated with either leaf N (r = –0.72 and –0.75**) or chlorophyll (r = –0.60 and –0.72**) concentrations. In addition, higher correlations were found between leaf N concentration and reflectance ratios. The identified N-specific spectral algorithms may be used for image interpretation and diagnosis of corn N status for site-specific N management.  相似文献   

5.
Nitrogen cycling in Louisiana Gulf Coast brackish marshes   总被引:1,自引:0,他引:1  
Nitrogen fixation and nitrogen accumulation were measured in a Louisiana Spartina patens brackish marsh. Using the acetylene reduction technique calibrated with direct 15N2 assimilation, an equivalent of 90.0 µ g N g–1 yr–1 was fixed. Fixation was greater in the summer months and in the upper portion of the soil profile. Extractable ammonium increased with depth and was negatively correlated with ethylene production. Average ammonium concentration in the sediment was 39 µg NH4 +-N g–1 sediment. Cesium-137 dating of the soil profile showed the marsh was vertically accreting at a rate of 0.60 cm yr–1. Calculations using vertical accretion rate, bulk density, and total nitrogen content of sediment indicate that the marshes are accumumating 7.2 g Nm–2 yr–1 thus serving as a major nitrogen sink. Measured nitrogen fluxes were incorporated with existing flux measurement in developing a nitrogen budget for the marsh.  相似文献   

6.
When Euglena gracilis was grown in the heterotrophic condition with glucose and (NH4)2SO4 as the carbon and nitrogen source, a high cell yield (4.28–4.48 g l–1) was obtained and the culture pH decreased to 1.6–2. The biomass production in the heterotrophic culture was compared to those in the autotrophic and mixotrophic cultures. Autotrophic growth was 4.7–6.3% of the heterotrophic one, whereas about 15–19% higher growth was obtained in the mixotrophic culture. Moreover, good production of chlorophyll (39.4 mg l–1) and carotenoids (13.8 mg l–1) were attained in the mixotrophic culture, giving the highest fermenter productivity with respect to biomass as well as chlorophyll and carotenoids. Through an energetic analysis in the mixotrophic culture, it was estimated about 25–28% of the total ATP requirement is formed in the photochemical reactions. This resulted in an improved biomass production in the mixotrophic culture of E. gracilis.  相似文献   

7.
Biological denitrification using a pure culture of Alcaligenes denitrificans was investigated in a closed rotating biological contactor, which operated with a hydraulic retention time of 2 h, a carbon/nitrogen ratio of 2:1, with a dissolved O2 concentration below 6 mg l–1 and under three different phosphate concentrations. Alcaligenes denitrificans was not repressed by O2 limitation and the removal of nitrate was about 30% more efficient at the intermediate phosphate concentration (20 mg P l–1).  相似文献   

8.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

9.
A study has been carried out to investigate the influence of nitrogen deficiency on intracellular lipid composition, including total fatty acid composition of lipids, polar lipids, and triacylglycerols, of the alga Botryococcus braunii Kütz IPPAS H-252 in batch culture. Under nitrogen limitation, the alga accumulates lipids as triacylglycerols and the total fatty acid (FA) composition changes: trienoic acids decrease (from 52.8–57.2 to 19.5–24.7% of the total FAs) and the oleic acid increases (from 1.1–1.2 to 17.1–24.4%) as does the saturated acids (from 23.7–26 to 32.9–46.1%). A similar rearrangement in the FA spectrum occurs at later times in the control culture, but it is less pronounced. Under nitrogen limitation, considerable changes in the polar lipid FAs are registered at day 13: saturated acids increase (from 28.6–35.5 to 76.8%) and all polyenoic acids markedly decrease (from 56.9–64.1 to 6.8%). Changes in the triacylglycerol fatty acid spectrum are seen on day 7: the oleic acid increases (from 14.7 to 34.2%) and remains at a high level till the end of the culture. In the control, triacylglycerols with large contents of oleic acid are detected at day 13, the total lipids and triacylglycerols still remaining unchanged.  相似文献   

10.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

11.
West  John A.  Zuccarello  Giuseppe C.  Karsten  Ulf 《Hydrobiologia》1996,326(1):277-282
The red alga Stictosiphonia hookeri is epilithic in shaded habitats of the upper intertidal zone from 30 to 55° S. Thalli of this species from Argentina, Chile, South Africa and Australia, usually without reproductive structures when collected, all developed tetrasporangia in culture. Although good vegetative growth occurred in all nine isolates at 20–25 °C, 12:12 light: dark cycle, 10–30 µmol photons m–2 s–1, none reproduced in these conditions except one isolate from Australia. At 15 °C the four South African (34 °S) isolates developed tetrasporangial stichidia, and three completed a Polysiphonia-type life history. Gametophytes were unisexual or bisexual. At 15 °C one isolate from Chile (36 °S) formed tetrasporangia, but sporelings were not viable. At 10 °C isolates from Argentina and Chile (53 °S and 54 °S) formed tetrasporangia; however, only the Chile isolate completed a Polysiphonia-type life history with unisexual gametophytes. The temperature required to induce sporogenesis correlates with the range of water and air temperatures in the natural habitats of each isolate. In irradiances >50 µmol m–2 s–1 the thalli became yellow- brown within two weeks because of phycobiliprotein loss, but this did not impair growth or reproduction. The Argentina and Chile isolates were resistant to freezing in seawater for at least two days, showing no cell damage. The protein cuticle of the outer cell wall is repeatedly shed in culture. This may serve to minimize the attachment of epiphytes in the field.  相似文献   

12.
Thirty isolates of mungbean Rhizobium were tested for the presence of H2-recycling system. All the isolates were preliminary screened for detecting H2-recycling system in free culture using triphenyltetrazolium chloride reduction as screening procedure. The isolates which reduced the dye rapidly at early stages of growth were found to recycle hydrogen both in vivo as well as in vitro. Nitrogen fixing efficiency of hydrogenase positive, hydrogenase negative isolates and Hup mutants was compared by green house experiments. There was 13–56% increase in dry matter and 21–46% increase in total nitrogen of the plants inoculated with H2-recycling isolates over the plants inoculated with non-recycling isolates. There was reduction in dry matter and total nitrogen content of the plants inoculated with Hup mutants as compared to plants inoculated with wild type strain. The per cent decrease due to inoculation with Hup mutants over wild type strain was 19–22 and 20–26 of dry weight and total nitrogen in plants, respectively.Abbreviations TTC triphenyltetrazolium chloride  相似文献   

13.
Two Caribbean strains (1651 and 1655) of the ciguatera-causing dinoflagellate Gambierdiscus toxicus were grown in xenic, batch culture under defined, measured nutrient conditions with nitrate, ammonium, urea, a mix of free amino acids (FAA), or putrescine as the nitrogen source. Cultures were maintained at 27 °C, salinity 35, 110 μmol m−2 s−1 (12 h:12 h light:dark cycle) on L2 medium at an initial nitrogen concentration of 50 μM N. Toxicity was determined using a ouabain/veratridine-dependent cytotoxicity assay (N2A assay) standardized to a ciguatoxin standard. Nitrate, ammonium, FAA, and putrescine supported growth, but urea did not. The appearance of ammonium in the organic nitrogen cultures indicated that G. toxicus and/or associated bacteria remineralized the available organic nitrogen. Both strains were exposed to nitrogen-limiting conditions as evidenced by chlorophyll a content per cell, nitrogen content, and nitrogen (N) to phosphorus (P) (N:P) ratio significantly declining once nitrogen was no longer available in the medium and cells entered stationary phase. Strain 1651 grew significantly faster than strain 1655 when nitrate, FAA, and putrescine was the nitrogen source, but not ammonium. Nitrogen source had no effect on growth rate (0.14 d−1) in strain 1651. The growth rate of strain 1655 (0.10–0.13 d−1) was significantly faster on ammonium than the other nitrogen sources. Strain 1655 was significantly more toxic (10-fold) than strain 1651 except when growing on ammonium at exponential phase. Toxicity ranged from 1.3 to 8.7 fg C-CTX1-Eq cell−1 in strain 1651 and from 30.7 to 54.3 fg C-CTX1-Eq cell−1 in strain 1655. Nitrogen source had no significant affect on toxicity. Toxicity was greater in stationary versus exponential phase cells for strain 1651 when grown on nitrate and strain 1655 regardless of nitrogen source. The difference in toxicity between growth phases may result from an increase in ciguatoxin and/or maitotoxin. Our results suggest that some strains of G. toxicus when associated with bacteria are able to take advantage of organic as well as inorganic nitrogen sources on short time scales to support future growth. The uncoupling of total nitrogen and phosphorus pools from conditions in the water column suggest that instantaneous growth rates can be supported by nutrients acquired hours to days earlier.  相似文献   

14.
A. L. Huber 《Hydrobiologia》1986,131(3):193-203
Variations in nitrogen fixation (acetylene reduction) by Nodularia spumigena blooms in the Peel-Harvey estuarine system were examined with respect to spatial (sampling station location, and depth) and temporal (seasonal and diurnal) distribution. The annual contributions of nitrogen fixation by the blooms to the nitrogen budget of the estuary were estimated to range from 309 to 713t. Contributions by nitrogen fixation were similar to the riverine inputs in the Harvey Estuary, but lower in the Peel Inlet.The Harvey Estuary had higher biomass and total fixation rates (to 0.4 nmol C2H2 · ml–1 h–1), but the heterocyst nitrogen fixation rates were greater in the Peel Inlet (to 9 × 10–1 nmol C2H2 · heterocyst–1 · h–1). Nitrogen fixation decreased with depth in response to light, though other factors also appeared to be involved. The rates of fixation decreased concurrently with increasing bloom age, total soluble inorganic nitrogen and salinities. Maximum daily fixation rates occurred in the early morning.  相似文献   

15.
Summary The influence of temperature (15–32°C) and the ratio of nitrogen to phosphorus (N/P) in the culture medium (0.5–80) on the growth kinetics and protein, chlorophyll, lipid and fatty acid content of the marine microalga Tetraselmis sp. have been studied. Below an N/P of 20, growth was determined by N limitation and above 20 by P limitation. Protein increased with a rise in N content at any test temperature. The chlorophyll content increased with temperature, with maximum values at 25°C. The lipid content decreased with increasing N/P ratio above 20°C. The polyunsaturated fatty acid content tends to be inversely proportional to the growth rate within the N/P range 20–80. The quotient of the n 3 and n 6 polyunsaturated-fatty-acid fractions, an indicator of the nutritive value of microalgae, was found to be within the range 2–3. These values were obtained either between 25 and 28°C independent of the N/P ratio used at 20°C for N/P ratios higher than 40.0. Offsprint requests to: Emilio Molina  相似文献   

16.
Gloeotrichia natans, a nitrogen fixing cyanobacterium common in rice fields in the Philippines, was used for studies to establish key features of its physiology and potential production in outdoor cultures. Under optimal growth conditions (38 °C, pH 8.0, no carbon enrichment) the specific growth rate of rice-field isolate was 0.076 h–1. The pH of the medium (between 6.5 and 9.0) did not influence the growth rate, but it did affect phycobiliprotein content, as reflected by a change in colour. At pH 7.0 the culture was green-brown, with phycobiliproteins constituting up to 10% of the total protein, while at pH 9.0 the culture was brownish-black and the pigment content was as high as 28% of the total protein. In outdoor cultures the specific growth rate was related directly to cell density in the range of 0.7–1.5 g dry weight 1–1 at a rate of stirring of 30 rpm, and inversely related to cell density at half this rate. At a stirring of 30 rpm, daily production of outdoor cultures harvested to maintain cell densities of 0.7, 1.15 andw 1.5 g 1–1 were 14.7, 17.1 and 18.1 g m–2 dt, respectively. This rate of production was maintained for more than 45 days. Phycobiliprotein content in the culture kept at a density of 1.5 g 1–1 reached 14% of the total biomass.  相似文献   

17.
Gelidium sesquipedale is the most important raw material used for extraction of agar in Spain. Based on chemostats, a system of culture for macroalgae with a continuous flow of culture medium has been developed. A stressed morphotype from the South of Spain was cultured, and the effects of different rates of NO 3 flow on growth and internal constituents were investigated in the laboratory. Cultivation was successful after optimizing factors affecting growth, such as irradiance level, renewal rate and water movement. Mass production was dependent on N supply. With a flow of 35 mol NO3 g–1 DW d–1, optimal values of growth (2.1% d–1) and biomass yield were obtained. In these conditions, biomass yield resembled the values observed in natural populations (about 500 g DW m–2 y–1). When the flow of N was reduced to 15 mol NO 3 g–1 DW d–1, growth rate and biomass yield were reduced three-fold, and were null when N was supplied as 7 mol NO 3 g–1 DW d–1. C:N ratio was an index of the physiological status of the tissue, remaining low when N was sufficient and raised to critical values when N supply was limited. Phycobiliproteins, kept at a constant irradiance level, were affected by N supply, acting as an internal nitrogen reserve, unlike chlorophylla. An effective phycobiliprotein synthesis took place when the flow of N was sufficient. Agar yield, on dry weight basis, was similar as a function of N flow, whereas agar yield of the culture was higher when N was sufficient as a result of growth not being limited by N.This system of culture, commonly used in microalgal studies, may have an important use in macroalgae as a system to obtain biomass of high quality as well as a good tool for physiological studies in conditions of continuous and controlled flow of nutrients.  相似文献   

18.
A milk–soymilk mixture was fermented using Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum BCRC11847 at different inoculum ratios (1:1, 1:2, 1:5, 2:1, and 5:1). When the inoculum ratio was 1:2, the cell numbers of both strains were balanced after 12 h of cultivation. The pH and titratable acidity were very similar at the various inoculum ratios of cultivation. The milk–soymilk mixture was supplemented with 5, 10, 15, and 20% Lycium chinense Miller juice and fermented with Lactobacillus paracasei subsp. paracasei NTU101 and B. longum BCRC11847. Sensory evaluation results showed that supplementation with 5% Lycium chinense Miller juice improved the acceptability of the fermented milk–soymilk. The fermented beverage was stored at 4°C for 14 days; variations in pH and titratable acidity were slight. The cell numbers of L. paracasei subsp. paracasei NTU101 and B. longum BCRC11847 in the fermented beverage were maintained at 1.2×109 CFU/ml and 6.3×108 CFU/ml, respectively, after 14 days of storage.  相似文献   

19.
The influences of nitrogen sources, culture temperature and activated charcoal supplements were studied in relation to the rooting ability of V. faba cuttings. The interaction of these factors led to quantitative and qualitative modifications of the culture responses. Low temperatures (14–18°C) were suitable for in vitro culture, limiting the formation of phenolics in plant material and making activated charcoal supplement unnecessary. Nitrogen supplements contributed in modifying the different plant responses, in accordance with temperature. Multiple shoot formation was obtained from the cotyledonary node and from the stem nodes cultivated in the presence of 6-benzylaminopurine (BAP). BAP at 4 mg l-1 was the most effective concentration in promoting high rates of shoot development. The original position of stem nodes was found to determine the explant response to plant growth regulator treatments, possibly due to the effect of residual apical dominance.  相似文献   

20.
Pseudomonas oleovorans was cultivated to produce medium chain length polyhydroxyalkanoates (MCL-PHAs) from octanoic acid and ammonium nitrate as carbon and nitrogen source, respectively, by a pH-stat fed-batch culture technique. The octanoate in the culture broth was maintained below 4 g l–1 by feeding the mixture of octanoic acid and ammonium nitrate when the culture pH rose above 7.1. The final cell concentrations of 63, 55 and 9.5 g l–1, PHA contents of 62, 75 and 67% of dry cell wt, and productivities of 1, 0.63 and 0.16 g l–1 h–1 were obtained when the C/N ratios in the feed were 10, 20 and 100 g octanoic acid g–1 ammonium nitrate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号