首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raynal M  Pruden A 《Biodegradation》2008,19(2):269-282
This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO—originally enriched on MTBE) and/or MTBE BTEX (MB—originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18 ± 0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48 ± 0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47 ± 0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95 ± 0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.  相似文献   

2.
Treatment of a gas contaminated with a mixture of benzene, toluene, ethylbenzene, and o-xylene (BTEX) compounds in a 40-cm-deep laboratory-scale bioreactor containing suspended biomass was investigated. Gas treatment efficiency was not significantly impacted by different BTEX mixtures, and approximately 99% removal was achieved for volumetric loadings of 11 to 18 mg-BTEX/L-reactor volume/hr (specific biomass loadings of 0.27 to 0.83 g-BTEX/g-VSS/d; inlet concentrations of total BTEX of 2.3 to 4.3 mg/L) and operational solids retention times (SRTs) of 1.7, 2.7, and 9.2 days. Maximum specific biodegradation rates of the reactor biomass increased as the reactor SRTs decreased. Under specific loadings greater than 1 g-BTEX/g-VSS/d the gas treatment became biokinetically limited, such that BTEX and unidentified BTEX metabolites accumulated in the bioreactor liquid over time. BTEX gas-liquid mass transfer was sufficient in the 40-cm-deep sparged liquid reactor to provide high BTEX treatment efficiency.  相似文献   

3.
Flow-through aquifer columns were used to investigate the feasibility of adding sulfate, EDTA–Fe(III) or nitrate to enhance the biodegradation of BTEX and ethanol mixtures. The rapid biodegradation of ethanol near the inlet depleted the influent dissolved oxygen (8 mg l-1), stimulated methanogenesis, and decreased BTEX biodegradation efficiencies from >99% in the absence of ethanol to an average of 32% for benzene, 49% for toluene, 77% for ethylbenzene, and about 30% for xylenes. The addition of sulfate, EDTA–Fe(III) or nitrate suppressed methanogenesis and significantly increased BTEX biodegradation efficiencies. Nevertheless, occasional clogging was experienced by the column augmented with EDTA–Fe(III) due to iron precipitation. Enhanced benzene biodegradation (>70% in all biostimulated columns) is noteworthy because benzene is often recalcitrant under anaerobic conditions. Influent dissolved oxygen apparently played a critical role because no significant benzene biotransformation was observed after oxygen was purged out of the influent media. The addition of anaerobic electron acceptors could enhance BTEX biodegradation not only by facilitating their anaerobic biodegradation but also by accelerating the mineralization of ethanol or other substrates that are labile under anaerobic conditions. This would alleviate the biochemical oxygen demand (BOD) and increase the likelihood that entraining oxygen would be used for the biotransformation of residual BTEX.  相似文献   

4.

The redox-mediating capacity of magnetic reduced graphene oxide nanosacks (MNS) to promote the reductive biodegradation of the halogenated pollutant, iopromide (IOP), was tested. Experiments were performed using glucose as electron donor in an upflow anaerobic sludge blanket (UASB) reactor under methanogenic conditions. Higher removal efficiency of IOP in the UASB reactor supplied with MNS as redox mediator was observed as compared with the control reactor lacking MNS. Results showed 82% of IOP removal efficiency under steady state conditions in the UASB reactor enriched with MNS, while the reactor control showed IOP removal efficiency of 51%. The precise microbial transformation pathway of IOP was elucidated by high-performance liquid chromatography coupled to mass spectroscopy (HPLC-MS) analysis. Biotransformation by-products with lower molecular weight than IOP molecule were identified in the reactor supplied with MNS, which were not detected in the reactor control, indicating the contribution of these magnetic nano-carbon composites in the redox conversion of this halogenated pollutant. Reductive reactions of IOP favored by MNS led to complete dehalogenation of the benzene ring and partial rupture of side chains of this pollutant, which is the first step towards its complete biodegradation. Possible reductive mechanisms that took place in the biodegradation of IOP were stated. Finally, the novel and successful application of magnetic graphene composites in a continuous bioreactor to enhance the microbial transformation of IOP was demonstrated.

  相似文献   

5.
Biodegradation is an effective technique to remediate polluted soil and groundwater. In the present experimental study, a mixed microbial culture obtained from the wastewater treatment sludge of a chemical industry was used to degrade liquid phase benzene, toluene, ethyl benzene, and xylene (BTEX), at individual initial concentrations varying between 15 and 75 mg/l. Experiments were conducted according to 2 k−1 fractional factorial design at the low (15 mg/l) and high (75 mg/l) levels of BTEX concentrations, to identify the main and interaction effects of parameters and their influence on biodegradation of individual BTEX compounds in mixtures. The individual removals varied between 16% and 75% when the concentrations of B, T, E, and X were sufficiently low in the mixture. However, both synergistic (removal of ethyl benzene) and antagonistic (removal of benzene) behavior were noticed when the concentrations of toluene and xylene was increased to higher levels. The individual removals were greater than 67% at their center point levels. The total BTEX removal values were later statistically analyzed and based on the Fischer’s variance ratio (F) and Probability values (P) it was observed that the main effects for total BTEX removal were significant than the squared and interaction effects.  相似文献   

6.
Conclusive evidence of methyl tert-butyl ether (MTBE) biotransformation and complete mineralization under aerobic conditions in environmental samples and enrichment cultures is reviewed, in addition to increasing evidence of MTBE biotransformation under anaerobic conditions. The metabolic pathway of MTBE appears to have two key intermediates, tert-butyl alcohol (TBA) and 2-hydroxy isobutyric acid (HIBA). The first enzyme in MTBE biodegradation has been identified as either a cytochrome P450 or a nonhemic monooxygenase in different isolates. Mixed and pure cultures of microorganisms have utilized MTBE as a sole carbon and energy source. Cometabolism of MTBE with n-alkanes at rates of 3.9 to 52 nmol/min/mg protein has been documented. The presence of co-contaminants such as BTEX has either not affected or seemed to limit MTBE biodegradation. Some studies of MTBE natural attenuation have attributed mass loss to biodegradation, while others have attributed mass loss to dilution and dispersion. Recent advances in the assessment of MTBE biodegradation have indicated the potential for natural anaerobic transformation of MTBE. In situ bioremediation of MTBE has been enhanced by adding air or oxygen, or by adding microorganisms and air or oxygen. Bioreactors have attained significant removal of MTBE from MTBE-contaminated influent. Despite historical concerns about the biodegradability of MTBE, several biological methods can now be used for MTBE remediation.  相似文献   

7.

Multi-walled carbon nanotubes (MWCNTs) released into the sewage may cause negative and/or positive effects on the treatment system. The objective of this study was to explore over 110 days’ effect of MWCNTs on the performance of anaerobic granular sludge and microbial community structures in an upflow anaerobic sludge blanket (UASB) reactor. The results showed that MWCNTs had no significant effect on the removal of chemical oxidation demand (COD) and ammonia in UASB reactor, but the total phosphorus (TP) removal efficiency increased by 29.34%. The biogas production of the reactor did not change. The anaerobic granular sludge tended to excrete more EPS to resist the effects of MWCNTs during the long-term impact. Illumina MiSeq sequencing of 16S rRNA gene revealed that MWCNTs did not affect the microbial diversity, but altered the composition and structure of microbial community in the reactor. In this process, Saccharibacteria replaced Proteobacteria as the highest abundant bacterial phylum. MWCNTs promoted the differentiation of methanogen structure, resulting in increase of Methanomassiliicoccus, Methanoculleus, and the uncultured WCHA1–57. These results indicated that MWCNTs impacted the performance of UASB reactor and the structures of the microbial community in anaerobic granular sludge.

  相似文献   

8.
Phenol biodegradation was carried out in a batch system by the bacterial strain Cupriavidus metallidurans in the presence of potassium humate that was prepared by alkaline extraction from oxyhumolite. The experiments were focused on the assessment of the humate effect on biodegradation activity of the tested bacterial strain. The achieved results demonstrated that the humate has a positive influence on the biodegradation of phenol and reduces the incubation time necessary for phenol removal. Higher biodegradation rate and more intensive growth were observed during the cultivation in presence of humate in comparison to the cultivation without its addition. Adsorption of the humate on bacterial biomass was observed as well. Subsequently, a phenol biodegradation testing in a continuous-flow system using a biofilm reactor was also carried out. Although the reactor was inoculated by C. metallidurans only, the microbial composition under an aerobic non-aseptic condition during this long-term cultivation changed. The phenol removal efficiency obtained in the biofilm reactor was higher than 92% when phenol concentration in a treated medium was 1200 mg l−1.  相似文献   

9.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

10.
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.  相似文献   

11.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

12.
The internal loop photobiodegradation reactor (ILPBR) was evaluated for the degradation of the pharmaceutical sulfamethoxazole (SMX) using batch experiments following three protocols: photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B). SMX was removed more rapidly by P&B than by either P or B alone, and the corresponding dissolved organic carbon (DOC) removals by P&B also were higher. The faster SMX removal probably was due to a synergy between photolysis and the rapid biodegradation of SMX by the biofilm. The greater DOC removal was brought about by the presence of biofilm bacteria able to biodegrade photolysis products. Ammonium N released during photolysis of SMX gave more evidence for the formation of intermediates and was enough in P&B experiments to support bioactivity when no other N was supplied. Clone libraries performed on the biofilms before and after the P&B experiments showed profound changes in the microbial community. Whereas Rhodopirellula baltica and Methylibium petroleiphilum PM1 dominated the biofilm after the B experiments, they were replaced by Micrococcus luteus, Delftia acidovorans, and Oligotropha carboxidovorans after the P&B experiments. The changes in microbial community structure mirrored the change in function in the P&B experiments: SMX biodegradation (presumably the roles of R. baltica and M. petroleiphilum) was out-competed by SMX photolysis, but biodegradation of photolysis products (most likely by M. luteus and D. acidovorans) became important. The higher removal rates of SMX and DOC, as well as the changes in microbial community structure, confirm the value of intimately coupling photolysis with biodegradation in the ILPBR.  相似文献   

13.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

14.
Benzene, toluene, ethylbenzene, and xylene are collectively known as BTEX which contributes to volatile environmental contaminants. This present study investigates the microbial degradation of BTEX in batch and continuous soil column experiments and its effects on soil matric potential. Batch degradation experiments were performed with different initial concentrations of BTEX using the BTEX tolerant culture isolated from petroleum-contaminated soil. In batch study, the degradation pattern for single substrate showed that xylene was degraded much faster than other compounds followed by ethylbenzene, toluene, and benzene with the highest μmax = 0.140 h?1 during initial substrate concentration of 100 mg L?1. Continuous degradation experiments were performed in a soil column with an inlet concentration of BTEX of about 2000 mg L?1 under unsaturated flow in anaerobic condition. BTEX degradation pattern was studied with time and the matric potential of the soil at different parts along the length of the column were determined at the end of the experiment. In continuous degradation study, BTEX compounds were degraded with different degradation pattern and an increase in soil matric potential was observed with an increase in depth from top to bottom in the column with applied suction head. It was found that column biodegradation contributed to 69.5% of BTEX reduction and the bacterial growth increased the soil matric potential of about 34% on an average along the column height. Therefore, this study proves that it is significant to consider soil matric potential in modeling fate and transport of BTEX in unsaturated soils.  相似文献   

15.
BTEX catabolism interactions in a toluene-acclimatized biofilter   总被引:1,自引:0,他引:1  
BTEX substrate interactions for a toluene-acclimatized biofilter consortium were investigated. Benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies were determined at a loading rate of 18.07 g m−3 h−1 and retention times of 0.5–3.0 min. This was also repeated for toluene in a 1:1 (m/m) ratio mixture (toluene: benzene, ethylbenzene, or xylene ) with each of the other compounds individually to obtain a final total loading of 18.07 g m−3 h−1. The results obtained were modelled using Michaelis–Menten kinetics and an explicit finite difference scheme to generate v max and K m parameters. The v max/K m ratio (a measure of the catalytic efficiency, or biodegradation capacity, of the reactor) was used to quantify substrate interactions occurring within the biofilter reactor without the need for free-cell suspended and monoculture experimentation. Toluene was found to enhance the catalytic efficiency of the reactor for p-xylene, while catabolism of all the other compounds was inhibited competitively by the presence of toluene. The toluene-acclimatized biofilter was also able to degrade all of the other BTEX compounds, even in the absence of toluene. The catalytic efficiency of the reactor for compounds other than toluene was in the order: ethylbenzene>benzene>o-xylene>m-xylene>p-xylene. The catalytic efficiency for toluene was reduced by the presence of all other tested BTEX compounds, with the greatest inhibitory effect being caused by the presence of benzene, while o-xylene and p-xylene caused the least inhibitory effect. This work illustrated that substrate interactions can be determined directly from biofilter reactor results without the need for free-cell and monoculture experimentation. Received: 13 April 2000 / Received revision: 20 July 2000 / Accepted: 27 July 2000  相似文献   

16.
Continuous bioremediation of gasoline-contaminatedwater in a packed-bed biobarrier system underoxygen-limited conditions is discussed. This studywas part of an extensive effort to develop analternative technology for the in situbioremediation of hydrocarbons where there is alimited supply of oxygen. Protruded stainless steelpieces and granulated peat moss were used as packingmaterial to support microbial growth in twobiobarriers. The inoculum was an enrichment culture ofan indigenous microbial population from a soil sample.The biobarriers' inlet gasoline concentrations and thelinear liquid velocities were similar to thosecommonly found at in situ conditions. Gasolineremoval efficiencies ranged from 94% to 99.9% in thestainless steel-packed biobarrier, and from 86.6% to99.6% in the peat moss-packed biobarrier. Effluentgasoline concentrations below 0.03 mg/l were obtainedat gasoline loading rates less than 27.5 mg/l.d in thestainless steel-packed biobarrier. The remainingfraction of gasoline in the effluent consisted mainlyof three aliphatic compounds and not the aromaticcompounds. Both biobarrier packings supported nearcomplete removal of the most soluble aromatichydrocarbons of gasoline (BTEX) under all theconditions examined. The consumption of sulfate andthe presence of sulfate-reducing microorganismssuggested the presence of anaerobic metabolism duringthe degradation of gasoline. Up to 92% gasoline wasremoved during the first 3 cm of the biobarriers'length.  相似文献   

17.
The aim of this study was to evaluate anthracene removal using activated soil reactors, previously inoculated, under both aerobic and anaerobic conditions. In the reactors, the soil was maintained at 60% moisture (weight basis), room temperature, in the dark, and under constant agitation at 100 rpm. Two experiments were run during and after acclimatization to evaluate anthracene removal under both aerobic and anaerobic conditions. The first one took place during inoculum acclimatization using three different concentrations of anthracene (50, 100, and 500 mg anthracene/L per day) during 90 days. The second experiment took place after acclimatization (during 132 days). The results of anthracene removal were compared with controls in which no additional inoculum was added. During the two experiments, the behavior of pH, chemical oxygen demand (COD), and biogas production was evaluated. Results indicate that the bacterial community adapted for removal of anthracene became enriched through the acclimatization process. Anthracene biodegradation occurred in the soil model with both types of reactors (aerobic and anaerobic), but the rates and extent of biodegradation in the aerobic reactor were higher (95%) than those in anaerobic conditions (74%). Microbial activity also contributed to enhancing bioremediation in the soil by reducing anthracene sorption.  相似文献   

18.
Biodegradation of BTEX by a microbial consortium isolated from a closed municipal landfill was studied using respirometric techniques. The kinetics of biodegradation were estimated from experimental oxygen uptake data using a nonlinear parameter estimation technique. All of the six compounds were rapidly degraded by the microbial culture and no substrate inhibition was observed at the concentration levels examined (200 mg L−1 as COD). Microbial growth and contaminant degradation were adequately described by the Monod equation. Considerable differences were observed in the rates of BTEX biodegradation as seen from the estimates of the kinetic parameters. A three-fold variation was seen in the values of the maximum specific growth rate, μmax. The highest value of μmax was 0.389 h−1 for p-xylene while o-xylene was characterized by a μmax value of 0.14 h−1, the lowest observed in this study. The half saturation coefficient, K s, and the yield coefficient, Y, varied between 1.288–4.681 mg L−1 and 0.272–0.645 mg mg−1, respectively. Benzene and o-xylene exhibited higher resistance to biodegradation while toluene and p-xylene were rapidly degraded. Ethylbenzene and m-xylene were degraded at intermediate rates. In biodegradation experiments with a multiple substrate matrix, substrate depletion was slower than in single substrate experiments, suggesting an inhibitory nature of substrate interaction. Received 15 February 1998/ Accepted in revised form 5 July 1998  相似文献   

19.
Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m2 that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.  相似文献   

20.
Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria   总被引:1,自引:0,他引:1  
Two thermophilic anaerobic bacterial consortia (ALK-1 and LLNL-1), capable of degrading the aromatic fuel hydrocarbons, benzene, toluene, ethylbenzene, and the xylenes (BTEX compounds), were developed at 60 °C from the produced water of ARCO'S Kuparuk oil field at Alaska and the subsurface water at the Lawrence Livermore National Laboratory gasoline-spill site, respectively. Both consortia were found to grow at 45–75 °C on BTEX compounds as their sole carbon and energy sources with 50 °C being the optimal temperature. With 3.5 mg total BTEX added to sealed 50-ml serum bottles, which contained 30 ml mineral salts medium and the consortium, benzene, toluene, ethylbenze, m-xylene, and an unresolved mixture of o- and p-xylenes were biodegraded by 22%, 38%, 42%, 40%, and 38%, respectively, by ALK-1 after 14 days of incubation at 50 °C. Somewhat lower, but significant, percentages of the BTEX compounds also were biodegraded at 60 °C and 70 °C. The extent of biodegradation of these BTEX compounds by LLNL-1 at each of these three temperatures was slightly less than that achieved by ALK-1. Use of [ring-14C]toluene in the BTEX mixture incubated at 50 °C verified that 41% and 31% of the biodegraded toluene was metabolized within 14 days to water-soluble products by ALK-1 and LLNL-1, respectively. A small fraction of it was mineralized to 14CO2. The use of [U-14C]benzene revealed that 2.6%–4.3% of the biodegraded benzene was metabolized at 50 °C to water-soluble products by the two consortia; however, no mineralization of the degraded [U-14C]benzene to 14CO2 was observed. The biodegradation of BTEX at all three temperatures by both consortia was tightly coupled to sulfate reduction as well as H2S generation. None was observed when sulfate was omitted from the serum bottles. This suggests that sulfate-reducing bacteria are most likely responsible for the observed thermophilic biodegradation of BTEX in both consortial cultures. Received: 12 July 1996 / Received revision: 31 December 1996 / Accepted: 31 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号