首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies against isolated beef-heart ubiquinol--cytochrome c reductase (complex III) have been characterized. Antibodies to complex III react strongly with isolated beef heart complex III and intact beef heart mitochondria, as shown by immunodiffusion and rocket electrophoresis experiments. The complex III content of intact mitochondria can be quantitated with rocket electrophoresis using isolated complex III as a standard. Antibodies to complex III also react with beef liver mitochondria and with both heart and liver mitochondria from rats. The latter are very weak antigens compared to beef heart material. Antibodies to complex III do not react with respiratory chain complexes I and IV, or F1-ATPase from beef heart mitochondria, but gives a slight, but variable, reaction with complex II and the membrane fraction isolated from complex V (oligomycin-sensitive ATPase). Antigenic sites are located on at least five of the seven peptides of complex III. These peptides are presumably lacking in respiratory chain complexes which do not react with antibodies to complex III, and are assumed to be uniquely located in complex III. Antiserum against complex III inhibitis duroquinol--cytochrome c reductase activity in isolated complex III and in complex III incorporated into phospholipid vesicles. Oxidation of NADH and succinate is not affected in submitochondrial particles treated with 6-times more antibody than required for complete inhibition of enzyme activity in free complex III or in complex III-phospholipid vesicles.  相似文献   

2.
The DSL1 complex is a conserved tethering complex at the endoplasmic reticulum that recognizes Golgi-derived COPI vesicles and hands them over to the fusion machinery. The DSL1 complex is the simplest tethering complex of the complexes associated with tethering containing helical rods (CATCHR) family. CATCHR tethering complexes play a role at compartments along the exocytic and endocytic pathways. In this review, different functions of the DSL1 complex are discussed, some open questions with the seemingly straightforward picture are pointed out and alternative functions of the DSL1 complex members are mentioned.  相似文献   

3.
The NAD(P)H dehydrogenase (NDH) complex functions in photosystem I cyclic electron transfer in higher plant chloroplasts and is crucial for plant responses to environmental stress. Chloroplast NDH complex is a close relative to cyanobacterial NDH-1L complex, and all fifteen subunits so far identified in NDH-1L have homologs in the chloroplast NDH complex. Here we report on the identification of two nuclear-encoded proteins NDH48 and NDH45 in higher plant chloroplasts and show their intimate association with the NDH complex. These two membrane proteins are shown to interact with each other and with the NDH complex enriched in stroma thylakoids. Moreover, the deficiency of either the NDH45 protein or the NDH48 protein in respective mutant plants leads to severe defects in both the accumulation and the function of the NDH complex. The NDH48 and NDH45 proteins are not components of the hydrophilic connecting domain of the NDH complex but are strongly attached to the hydrophobic membrane domain. We conclude that NDH48 and NDH45 are novel nuclear-encoded subunits of the chloroplast NDH complex and crucial both for the stable structure and function of the NDH complex.  相似文献   

4.
The majority of mitochondrial proteins are nuclear-encoded and need to be transported into the mitochondria, including the proteins in the outer mitochondrial membrane. For β-barrel proteins, the preproteins are initially recognized and imported by the TOM complex, then shuttled to the SAM complex via small Tim proteins. For ⍺-helical proteins, some preproteins are recognized by the TOM complex and imported into the membrane by the MIM complex. In recent years multiple structures of the TOM complex and the SAM complex have been reported, increasing our understanding of the mechanism of protein biogenesis in the outer mitochondrial membrane.  相似文献   

5.
Pre-mRNA assembles into spliceosomal complexes in the stepwise pathway E-->A-->B-->C. We show that mutations in the metazoan branchpoint sequence (BPS) have no apparent effect on E complex formation but block the assembly of the A complex and the UV cross-linking of U2 small nuclear ribonucleoprotein particle (snRNP) proteins. Unexpectedly, a novel complex, designated E*, assembles on pre-mRNAs containing BPS mutations. Unlike the E complex, the E* complex accumulates in the presence of ATP. U1 snRNP and U2AF, which are tightly bound to pre-mRNA in the E complex, are not tightly bound in the E* complex. Significantly, previous work showed that U1 snRNP and U2AF become destabilized from pre-mRNA after E complex assembly on normal pre-mRNAs. Thus, our data are consistent with a model in which there are two steps in the transition from the E complex to the A complex (E-->E*-->A). In the first step, U1 snRNP and U2AF are destabilized in an ATP-dependent, BPS-independent reaction. In the second step, the stable binding of U2 snRNP occurs in a BPS-dependent reaction.  相似文献   

6.
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.  相似文献   

7.
Summary The photosynthetic pigments of chloroplast thylakoid membranes are complexed with specific intrinsic polypeptides which are included in three supramolecular complexes, photosystem I complex, photosystem II complex and the light-harvesting complex. There is a marked lateral heterogeneity in the distribution of these complexes along the membrane with photosystem II complex and its associated light-harvesting complex being located mainly in the stacked membranes of the grana partitions, while photosystem I complex is found mainly in unstacked thylakoids together with ATP synthetase. In contrast, the intermediate electron transport complex, the cylochrome b-f complex, is rather uniformly distributed in these two membrane regions. The consequences of this lateral heterogeneity in the location of the thylakoid complexes are considered in relation to the function and structure of chloroplasts of higher plants.  相似文献   

8.
We have charted the movements of E sigma 32 RNA polymerase at the heat-shock promoter PgroE throughout open complex formation, using hydroxyl radical footprinting. In combination with methylation protection and DNase I experiments, these data suggest the following model for open complex formation. E sigma 32 initially anchors itself in the upstream region of the promoter forming the first closed complex, RPC1; in this complex the enzyme makes backbone contacts in the -35 region of the promoter that are maintained throughout open complex formation. An isomerization follows resulting in a second closed complex, RPC2; in this complex the enzyme makes base-specific and backbone contacts in the -10 region that are almost identical to those found in the open complex. Thus, at the groE promoter, upstream contacts are established in RPC1 and downstream contacts in RPC2. A similar pattern of backbone contacts was obtained for E sigma 32 bound in the open complex at two additional heat-shock promoters, suggesting that the overall topology of holoenzyme in the open complex is similar regardless of sequence variations in the promoter.  相似文献   

9.
Faunistic complexes of 155 species of the Cladocera found in Eastern Siberia and the Far East of Russian Federation are described. The eight complexes are specified: unrevised widely spread species (51), the widespread Eurasian faunistic complex (34 species), the circumpolar complex (4 species), the East Asian and American (Beringian) complex (8 species), the endemic East Asian complex (19 species), the southern thermophilic complex (12 species), the mountainous endemic complex (3 species), and the Baikal endemic complex (8 species). Directions for further studies are suggested. Faunistic investigations of the modern level in the East Palearctic represent an independent task, which should be accomplished by taxonomists in close cooperation with specialists on local faunas.  相似文献   

10.
Owing to the significance of inhibitory effect of vanadium ion to Na, K-ATPase, a complex formation between ATP and vanadyl ion was investigated over a wide pH range. Formations of two types of complex are observed : a blue complex formed in acidic and neutral pH regions and a green complex at higher than pH 11. On the basis of the results on potentiometric titration, optical and EPR spectra and empirical bonding coefficients calculated from the EPR parameters, two characteristic types of coordination environment are proposed for the ATP-vanadyl complex : a blue 1:1 complex is a relatively weak complex including a phosphate-vanadyl coordination mode, whereas a green 2:1 complex is much stronger complex including a vanadyl-oxygen coordination contributed from a deprotonated hydroxyl group of the ribose moiety of ATP.  相似文献   

11.
Characterization of a Tn5 pre-cleavage synaptic complex   总被引:9,自引:0,他引:9  
Protein catalyzed DNA rearrangements typically require assembly of complex nucleoprotein structures. In transposition and integration reactions, these structures, termed synaptic complexes, are mandatory for catalysis. We characterize the Tn5 pre-cleavage synaptic complex, the simplest transposition complex described to date. We identified this complex by gel retardation assay using short, linear fragments and have shown that it contains a dimer of transposase, two DNA molecules, and is competent for DNA cleavage in the presence of Mg(2+). We also used hydroxyl radical footprinting and interference techniques to delineate the protein-DNA contacts made in the Tn5 synaptic and monomer complexes. All positions (except position 1) of the end sequence are contacted by transposase in the synaptic complex. We have determined that positions 2-5 of the end sequence are specifically required for synaptic complex formation as they are not required for monomer complex formation. In addition, in the synaptic complex, there is a strong, local distortion centered around position 1 which likely facilitates cleavage.  相似文献   

12.
The effects of decylubiquinone, a ubiquinone analogue, on mitochondrial function and inhibition thresholds of the electron transport chain enzyme complexes in synaptosomes were investigated. Decylubiquinone increased complex I/III and complex II/III activities by 64 and 80%, respectively, and attenuated reductions in oxygen consumption at high concentrations of the complex III inhibitor myxothiazol. During inhibition of complex I, decylubiquinone attenuated reductions in synaptosomal oxygen respiration rates, as seen in the complex I inhibition threshold. Decylubiquinone increased the inhibition thresholds of complex I/III, complex II/III, and complex III over oxygen consumption in the nerve terminal by 25–50%, when myxothiazol was used to inhibit complex III. These results imply that decylubiquinone increases mitochondrial function in the nerve terminal during complex I or III inhibition. The potential benefits of decylubiquinone in diseases where complex I, I/III, II/III, or III activities are deficient are discussed.  相似文献   

13.
Three categories of compound yolks are synthesized during vitellogenesis of Mylabris pustulata. CY1 bodies originate de novo and are composed of protein-carbohydrate (glycogen)-RNA complex. CY2 bodies originate from precursors in follicular epithelium and are composed of protein-carbohydrate (glycogen) complex. CY3 bodies originate from extraovarian precursors and are composed of protein-acid mucopolysaccharide-glycogen-phospholipid complex.  相似文献   

14.
We have characterized an RNP complex that assembles in nuclear extracts on the negative regulator of splicing (NRS) element from Rous sarcoma virus. While no complex was detected by native gel electrophoresis under conditions that supported spliceosome assembly, gel filtration revealed a specific ATP-independent complex that rapidly assembled on NRS RNA. No complexes were formed on non-specific RNA. Unlike the non-specific H complex, factors required for NRS complex assembly are limiting in nuclear extract. The NRS complex was not detected in reactions containing ATP and pre-formed complexes were dissociated in the presence of ATP. In addition, the assembly process was sensitive to high salt but NRS complexes were salt stable once formed. Assembly of the NRS complex appears functionally significant since mutated NRS RNAs that fail to inhibit splicing in vivo are defective for NRS complex assembly in nuclear extract. The probable relationship of the NRS complex to spliceosomal complexes is discussed.  相似文献   

15.
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

16.
Construction of complex receptive fields in cat primary visual cortex.   总被引:4,自引:0,他引:4  
L M Martinez  J M Alonso 《Neuron》2001,32(3):515-525
In primary visual cortex, neurons are classified into simple cells and complex cells based on their response properties. Although the role of these two cell types in vision is still unknown, an attractive hypothesis is that simple cells are necessary to construct complex receptive fields. This hierarchical model puts forward two main predictions. First, simple cells should connect monosynaptically to complex cells. Second, complex cells should become silent when simple cells are inactivated. We have recently provided evidence for the first prediction, and here we do the same for the second. In summary, our results suggest that the receptive fields of most layer 2+3 complex cells are generated by a mechanism that requires simple cell inputs.  相似文献   

17.
EA Richey  H Qin 《PloS one》2012,7(8):e43118
Intraflagellar transport (IFT), the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism.  相似文献   

18.
The properties of an RNA-A protein complex isolated from the RNA bacteriophage M12 are described. The molar ratio of RNA to A protein in the complex is estimated to be 1:1. In sucrose gradients, the complex sediments like free RNA molecules. In contrast to RNA alone, which can only infect spheroplasts, the RNA-A protein complex infects intact Escherichia coli cells and produces infectious progeny particles like the original phage. Evidence is presented that the infection of the host cells by the complex takes place via F pili. All of the infectivity disappears if the ionic bonds of RNA to A protein in the complex are dissociated in 0.5 M sodium chloride buffer at 37 degrees C. Furthermore, the kinetics of complex dissociation and loss of infectivity are the same, implying that the binding of A protein to the RNA is a prerequisite for infectivity on intact host cells.  相似文献   

19.
Abnormal complex formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein and pathological ubiquitination of abnormal complex are two pathological processes involved in DRPLA neurodegeneration. Pathological ubiquitination and solubility in SDS and reducing agent are two unique characteristics of the DRPLA protein complex. Ubiquitination of abnormal DRPLA protein complex in DRPLA brain tissue is heat-resistant and stronger than that in control brain tissue. Pathological ubiquitination of DRPLA protein complex correlates with the onset of symptoms and the size of an expanded glutamine repeat in brain tissue of patients with DRPLA. Pathological ubiquitination plays an important role in DRPLA pathology. DRPLA protein complex is water-insoluble but soluble in SDS and reducing agent, and displays no difference in water insolubility between control and DRPLA brain tissue. Abnormal insoluble complex formation is not developed by a qualitative change in water insolubility of DRPLA protein complex but is developed by a spontaneous accumulation of an abnormally large amount of the DRPLA protein complex.  相似文献   

20.
Petruzzella V  Papa S 《Gene》2002,286(1):149-154
Among the mitochondrial disorders, complex I deficiencies are encountered frequently. Although some complex I deficiencies have been associated with mitochondrial DNA mutations, in the majority of the complex I-deficient patients mutations of nuclear genes are expected. This review attempts to summarize genetic defects affecting nuclear encoded subunits of complex I reported to date focusing on those found in the NDUFS4 gene. NDUFS4 product is 18 kDa protein which appears to have a dual role in complex I, at least: cAMP-dependent phosphorylation activates the complex; non-sense mutation of NDUFS4 prevents normal assembly of a functional complex in the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号