首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall of the gram-positive Corynebacterium glutamicum was prepared. It contained an ion-permeable channel with a single-channel conductance of about 6 nS in 1 M KCl. The mobility sequence of the ions in the channel is similar to that in the aqueous phase, suggesting that it is a water-filled channel wide enough to allow unhindered diffusion of ions. The results indicate that we have identified the hydrophilic pathway through the mycolic acid layer of C. glutamicum.  相似文献   

2.
A channel-forming protein was identified in cell wall extracts of the Gram-positive, strictly aerobic bacterium Nocardia farcinica . The cell wall porin was purified to homogeneity and had an apparent molecular mass of about 87 kDa on tricine-containing SDS–PAGE. When the 87 kDa protein was boiled for a longer time in sodium dodecylsulphate (SDS) it dissociated into two subunits with molecular masses of about 19 and 23 kDa. The 87 kDa form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine (PC) phosphatidylserine (PS) mixtures by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 3.0 nS in 1 M KCl, 10 mM Tris-HCl, pH 8, and were found to be cation selective. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated point charge effects on the channel properties. The analysis of the single-channel conductance data in different salt solutions using the Renkin correction factor, and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.4–1.6 nm. Channel-forming properties of the cell wall porin of N. farcinica were compared with those of mycobacteria and corynebacteria. The cell wall porins of these members of the order Actinomycetales share common features because they form large and water-filled channels that contain negative point charges.  相似文献   

3.
The mycolic-acid layer of certain gram-positive bacteria, the mycolata, represents an additional permeability barrier for the permeation of small water-soluble solutes. Consequently, it was shown in recent years that the mycolic acid layer of individual bacteria of the group mycolata contains pores, called porins, for the passage of hydrophilic solutes. Corynebacterium amycolatum, a pathogenic Corynebacterium species, belongs to the Corynebacteriaceae family but it lacks corynomycolic acids in its cell wall. Despite the absence of corynomycolic acids the cell wall of C. amycolatum contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of C. amycolatum. Based on partial sequencing of the protein responsible for channel formation derived from C. amycolatum ATCC 49368 we were able to identify the gene coram0001_1986 within the known genome sequence of C. amycolatum SK46 that codes for the cell wall channel. The corresponding gene of C. amycolatum ATCC 49368 was cloned into the plasmid pXHis for its expression in Corynebacterium glutamicum ?porA?porH. Biophysical characterization of the purified protein (PorAcoram) suggested that coram0001_1986 is indeed the gene coding for the pore-forming protein PorAcoram in C. amycolatum ATCC 49368. The protein belongs to the DUF (Domains of Unknown Function) 3068 superfamily of proteins, mainly found in bacteria from the family Corynebacteriaceae. The nearest relative to PorAcoram within this family is an ORF which codes for PorAcres, which was also recognized in reconstitution experiments as a channel-forming protein in Corynebacterium resistens.  相似文献   

4.
Many surface proteins in Gram-positive bacteria are covalently linked to the cell wall through a transpeptidation reaction catalysed by the enzyme sortase. Corynebacterium diphtheriae encodes six sortases, five of which are devoted to the assembly of three distinct types of pilus fibres--SrtA for the SpaA-type pilus, SrtB/SrtC for the SpaD-type pilus, and SrtD/SrtE for the SpaH-type pilus. We demonstrate here the function of SrtF, the so-called housekeeping sortase, in the cell wall anchoring of pili. We show that a multiple deletion mutant strain expressing only SrtA secretes a large portion of SpaA polymers into the culture medium, with concomitant decrease in the cell wall-linked pili. The same phenotype is observed with the mutant that is missing SrtF alone. By contrast, a strain that expresses only SrtF displays surface-linked pilins but no polymers. Therefore, SrtF can catalyse the cell wall anchoring of pilin monomers as well as pili, but it does not polymerize pilins. We show that SrtA and SrtF together generate wild-type levels of the SpaA-type pilus on the bacterial surface. Furthermore, by regulating the expression of SpaA in the cell, we demonstrate that the SrtF function becomes critical when the SpaA level is sufficiently high. Together, these findings provide key evidence for a two-stage model of pilus assembly: pilins are first polymerized by a pilus-specific sortase, and the resulting fibre is then attached to the cell wall by either the cognate sortase or the housekeeping sortase.  相似文献   

5.
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.  相似文献   

6.
The recent determination of the complete genome sequence of Corynebacterium diphtheriae, the aetiological agent of diphtheria, has allowed a detailed comparison of its physiology with that of its closest sequenced pathogenic relative Mycobacterium tuberculosis. Of major importance to the pathogenicity and resilience of the latter is its particularly complex cell envelope. The corynebacteria share many of the features of this extraordinary structure although to a lesser level of complexity. The cell envelope of M. tuberculosis has provided the molecular targets for several of the major anti-tubercular drugs. Given a backdrop of emerging multi-drug resistant strains of the organism (MDR-TB) and its continuing global threat to human health, the search for novel anti-tubercular agents is of paramount importance. The unique structure of this cell wall and the importance of its integrity to the viability of the organism suggest that the search for novel drug targets within the array of enzymes responsible for its construction may prove fruitful. Although the application of modern bioinformatics techniques to the 'mining' of the M. tuberculosis genome has already increased our knowledge of the biosynthesis and assembly of the mycobacterial cell wall, several issues remain uncertain. Further analysis by comparison with its relatives may bring clarity and aid the early identification of novel cellular targets for new anti-tuberculosis drugs. In order to facilitate this aim, this review intends to illustrate the broad similarities and highlight the structural differences between the two bacterial envelopes and discuss the genetics of their biosynthesis.  相似文献   

7.
Detergent extracts of whole cells of the Gram-positive, non-pathogenic, strictly aerobic bacterium Nocardia corynebacteroides contain channel-forming activity. The protein responsible for channel formation was identified using lipid bilayer experiments. It was purified to homogeneity and had an apparent molecular mass of about 134 kDa on SDS-PAGE when it was solubilized at 40 degrees C. When the 134 kDa protein was heated to 100 degrees C for 10 min in sample buffer, it dissociated into subunits with a molecular mass of about 23 kDa and focused at pI of 4.5 during isoelectric focusing. The pure 134 kDa protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine-phosphatidylserine mixtures by the formation of ion-permeable channels. The channels had an average single-channel conductance of 5.5 nS in 1 M KCl and were found to be cation-selective. Asymmetric addition of the 134 kDa protein to lipid bilayer membranes resulted in an asymmetric voltage-dependence. The analysis of the single-channel conductance as a function of cation radii using the Renkin correction factor and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.0 nm. The channel characteristics of the cell wall channel of N. corynebacteroides were compared with those of other members of the mycolata. They share common features because they are composed of small molecular mass subunits and form large and water-filled channels.  相似文献   

8.
9.
10.
The chemical characteristics of 6 batches of the preparation, obtained from the cell wall of C. diphtheriae grown in liquid and solid culture media, with respect to their content of nitrogen, hexoses, pentoses, total amino sugars, lipids and to the possible admixture of nucleic acids are presented. From the results of the chemical analysis of these batches their standardization according to the ratio of total amino sugars and pentoses to total nitrogen in C. diphtheriae cell-wall preparation is proposed.  相似文献   

11.
We have surveyed the publicly available genome sequence of Corynebacterium diphtheriae (www.sanger.ac.uk) to identify components of the phosphotransferase system (PTS), which plays a central role in carbon metabolism in many bacteria. Three gene loci were found to contain putative pts genes. These comprise: (i) the genes of the general phosphotransferases enzyme I (ptsI) and HPr (ptsH), a fructose-specific enzyme IIABC permease (fruA), and a fructose 1-phosphate kinase (fruK); (ii) a gene that encodes an enzyme IIAB of the fructose/mannitol family, and a novel HPr-like gene, ptsF, that encodes an HPr domain fused to a domain of unknown function; (iii) and a gene for a glucose-specific enzyme IIBCA (ptsG). A search for genes that may be putative PTS-targets or that may operate in general carbon regulation revealed a possible regulatory gene encoding an antiterminator protein downstream from ptsG. Furthermore, genes were detected encoding glycerol kinase, glucose kinase, and a homologue of the global activator of carbon catabolite repression in Escherichia coli, CAP. The possible significance of these observations in carbon metabolism and the novel features of the detected genes are discussed.  相似文献   

12.
The isolation and characterization of two different nonsense suppressor strains of Corynebacterium diphtheriae C7 sup+(-)tox- are described. Appropriate lysogens of these strains with corynephage beta, carrying known class II tox premature polypeptide chain termination mutations [C7sup-1(betatox-30) and C7sup-2(betatox-45)], each produce a 62,000-dalton polypeptide with nicotinamide adenine dinucleotide: elongation factor-2 adenosine diphosphate ribosyltransferase activity in addition to a chain-terminated polypeptide of 30,000 or 45,000 daltons, respectively. In addition, purified protein of 62,000 daltons, resulting from the suppression of the nonsense mutations tox-30 and tox-45, will react with antisera purified against the terminal 17,000 daltons of the toxin molecule and are immunologically identical to toxin by radial immunodiffusion. The suppression pattern of lysogenic derivatives of C7sup-1(-)tox- and C7sup-2(-)tox- with other class II and III mutants of corynephage beta was determined.  相似文献   

13.
14.
Transport of ferric iron into Corynebacterium diphtheriae C7(beta) was shown to occur by a high-affinity, active transport system. Optimal rates were at pH 6.8 and 40 degrees C. Strong inhibition of uptake by carbonyl cyanide m-chlorophenylhydrazone was consistent with the electrochemical proton gradient as the major energy source for iron transport, and inhibition by Hg2+ indicated that sulfhydryl groups were also important. Evidence was obtained for stimulation of iron uptake at pH 8.0 by a dialyzable, extracellular factor present in conditioned medium from low-iron cultures of C. diphtheriae.  相似文献   

15.
16.
Phage beta 197tox-, which codes for CRM197, a nontoxic protein immunochemically indistinguishable from diphtheria toxin, was UV induced from a culture of the C7(beta 197)tox- strain. A total of 191 C7(beta 197)tox- lysogens were isolated and selected according to the halo produced on TYE agar containing antidiphtheria toxin serum and were further characterized by Southern blots of their chromosomal DNA. Most of the isolates turned out to be monolysogens, but some tandem and nontandem double lysogens were also found. The nontandem double lysogens were stable and capable of giving high yields of CRM197, up to threefold higher than monolysogens. They are, therefore, suitable for large-scale industrial production.  相似文献   

17.
During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.  相似文献   

18.
19.
1. The electron-transport mechanism was examined in the ;particulate' and ;supernatant' fractions of disintegrated cells of a Park-Williams strain of Corynebacterium diphtheriae. 2. Succinate-oxidase activity was found mainly in the ;particulate' fraction, and NADH(2) oxidase mainly in the ;supernatant', which was devoid of cytochromes and menaquinone. 3. The sum of the activities of particles and supernatant fractions, with respect to both succinate oxidase and NADH(2) oxidase, was substantially less than that of the crude cell extract from which they were obtained. Full activity was restored on recombining ;particles' and ;supernatant'. The characteristics of this reassembled system were investigated. 4. The strain of organism (CN2000) examined contained cytochromes corresponding spectroscopically to ;a', ;b' and ;c' types. All three were reduced by succinate, lactate or NADH(2); but a portion of the cytochrome b, susceptible to reduction by dithionite, could not be reduced by the substrates. 5. Triton X-100 inhibits oxidation of succinate by particulate fraction; on adding succinate, the reduction of cytochrome b is not affected but that of cytochromes a and c is delayed. 6. Irradiation at 360mmu completely destroys menaquinone in the particle fraction. Succinate oxidation is severely decreased; succinate dehydrogenase and NADH(2) oxidation are little affected. Certain menaquinones will restore succinate oxidation in the irradiated material. 7. On adding succinate to irradiated particulate material cytochrome b is partially reduced at once, but reduction of cytochromes a and c is much delayed. A portion of the cytochrome b remains not reduced, but reduction occurs rapidly on the addition of menaquinone (MK-2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号