首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the concentrations of heavy metal (Cd, Pb, Fe, and Ni) in contaminated soils adjacent to two steel mill companies and in three crops (i.e., wheat, rice, and onion) grown in these regions were compared with a non-industrial site in Isfahan province, central Iran. The results were manifold. The heavy metal concentrations of both the soil and crops within the two industrial regions turned out to be more significant than the nonindustrial counterpart. In addition, the soils surrounding the companies were demonstrated to be contaminated by Cd, Pb, and Ni according to the limits provided by the international standards (i.e., USEPA and European Union standards). As for the crops from the investigated contaminated sites, the mean concentrations of Cd, Ni, and Pb exceeded the maximum permissible levels for human consumption stipulated by FAO/WHO standards. Furthermore, the values gained from the target hazard quotient were above one, meaning that the crops are contaminated. Given the results gained from a comparison made between estimated daily intake and tolerable daily intake, it can be concluded that the inhabitants of the two investigated contaminated sites are at a potentially serious health risk caused by exposure to the crops contaminated with the heavy metal.  相似文献   

2.
Abstract

With industrialization and human activities, shellfish may be contaminated by various pollutants such as heavy metals. This study aims at the concentrations of As, Cr, Mn, Ni, Cu, Zn, Cd, Sn, Sb and Pb in shellfish collected from Fujian of China, and the risk of heavy metals in shellfish on human health based on target hazard quotients (THQ). Results showed that the THQ values of the elements were far below 1, except for As with an average value of 1.148 in razor clam. No detrimental health effects of heavy metals on humans health was observed by daily consumption of mussel and oyster, but the exposed population to short-necked clam, scallop and razor clam might experience noncarcinogenic health risks because each of the total THQ values was above 1 for the three shellfish.  相似文献   

3.
Levels of Mo, As, Se, Fe, Cu, Zn, Ni, and Pb were determined in a vegetable commonly consumed in Pakistan. Samples were collected from three different sites (Ratokala, Phularwan, and Mailowal) supplied with three different water sources. Mo and Pb in water and Mo and As in C. sativum were higher than the suggested standards at the international level. Lower bioconcentration factor and pollution load index were seen at Site-I than at other sites. A positive association was found between the rhizosphere metals and those of the vegetable at all three sites. Enrichment factor at three sites ranged from 0.28 to 10.39. The highest value of daily intake of metals was found for Fe (0.245 mg/kg/day) and of the health risk index for As (70.41) at the wastewater inundated site. It is inferred that uptake of Mo, As, Cu, Ni, and Pb through C. sativum represents a high health danger to the individuals using this vegetable.  相似文献   

4.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

5.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

6.
The aims of this article were to investigate heavy metals concentrations in urban street dust of Tianjin, to examine spatial variations of heavy metals pollution, and to assess their health risk to local populations. Urban street dust samples were collected from 144 typical crossroads in an urban area of Tianjin. Levels of heavy metals were determined by atomic absorption spectrophotometer analyzer. Given comprehensive consideration of the complexity and uncertainty of health risk assessment, trapezoidal fuzzy number was introduced to assess the health risk of heavy metals in the urban street dust of Tianjin. The results showed that the pollution of heavy metals in the urban street dust of Tianjin was serious. The relatively serious metal pollution tended to be located in the center, north, northeast, and southeast of the study area. The research indicated that heavy metals in street dust had caused non-cancer hazard to children but had not caused non-cancer or cancer hazard to adults. The direct ingestion of dust via hand-mouth contact behaviors was the major exposure pathway for health risk.  相似文献   

7.
Heavy metal contamination levels, their potential sources and associated health risk of River Balogun – a major source of water for daily domestic activities–were investigated using statistical techniques and some health risk indices. To achieve this, 51 samples from 17 stations (STs) along the river were collected in December 2016 and analyzed for the presence of Lead (Pb), Zinc (Zn), Nickel (Ni), Arsenic (As), and Copper (Cu). The results of the study revealed the presence of As, Ni, and Pb concentration levels exceeding or equal to World Health Organization standards. In addition, the application of both methods used revealed that low pH values measured from the river could emanate from leachate of agrochemicals and carbonic acid from decayed plants while high Nickel and Arsenic concentrations were from the overapplication of fertilizers used in farms surrounding the river and found their way into the river after precipitation. Health risk assessment showed that all the water sampled at different STs would pose a serious threat to the health of children and adults overtime especially due to elevated arsenic concentration measured in all STs.  相似文献   

8.
This paper analyzed the distribution and speciation of seven heavy metals in sediments in Jiaozhou Bay. The ecological risk was assessed using three index approaches (i.e., risk assessment code (RAC), contamination factor (CF), and potential ecological risk index (PERI)) and by a comparison with sediment quality guidelines (Chinese Marine Sediment Quality Standards (CMSQS), and threshold effect level (TEL) and probable effect level (PEL) from the USEPA). Pb, Cr, As, Cu, Zn, and Hg contents at most sites were above the corresponding TEL and Class I criteria (CMSQS) value. Particularly, high contents of Cu, detected at sites S7 (124.5 mg kg?1) and S8 (118.3 mg kg?1), exceeded the respective PEL value, indicating that harmful biological effects might occur. Speciation analysis, individual CF, and RAC calculations suggested that Cd had the highest bioavailable fraction and thus posed a very high risk to aquatic ecosystem; Cu and Zn showed a medium–high risk. Both global CF and PERI analysis indicated a high pollution risk at sites S7, S1, S3, and S2, but the assessments of specific sites were different. The incomplete consistency suggested that it is necessary to consider both total contents and chemical speciation for providing a more realistic appraisal for the risk of heavy metals in sediments.  相似文献   

9.
Due to rapid industrialization and urbanization, human activities like industrial and agricultural production, transportation, aggravate heavy metal pollution in soil and continue to endanger vegetables and human health. In this study, three contaminated areas affected by heavy metal pollution in Guangdong Province were investigated in terms of Cu, Zn, Pb, and Cd concentrations in soil and vegetables. Further analyses of the contamination status and potential risks to the health of residents consuming these vegetables were conducted. Results showed the following average heavy metal concentrations in vegetables and soil: Shaoguan > Guangzhou > Dongguan, indicating that mining has caused massive soil-heavy metal pollution. The heavy metal concentrations and Bioconcentration factors (BCFs) showed the following trend: leaf-vegetables > fruit-vegetables > root-vegetables, and those of vegetable type were as follows: Cd > Zn > Cu > Pb. The Nemero pollution index (PI) of all research region soils and hazard index (HI) exceeded 1. Hence, more attention should be paid to the potential for adverse health effects caused by the consumption of vegetables produced in these sites . Thus, effective measures are encouraged, with a focus on children due to their vulnerability to these heavy metals.  相似文献   

10.
In Dabaoshan mine, dumping sites were the largest pollution source to the local environment. This study analyzed the activation and ecological risk of heavy metals in waste materials from five dumping sites. Results indicated that the acidification of waste materials was severe at all dumping sites, and pH decreased below 3.0 at four of the five sites. There was a drastic variation in Cu, Zn, Pb, and Cd concentrations in different sites. Site A with 12915.3 mg kg?1 Pb and 7.2 mg kg?1 Cd and site C with 1936.2 mg kg?1 Cu and 5069.0 mg kg?1 Zn were severely polluted. Higher concentrations of water-soluble Cu were probably the critical constraint for local pioneer plants. A significant positive correlation was found between the concentrations of water-soluble and HOAc-extractable elements, and the regression analysis showed that, compared with Cu, Zn and Cd, Pb was more difficult to be transformed from HOAc extractable to water soluble. Concentration of water soluble metals should be an important index, same as concentration of HOAc extractable metals, in assessing ecological risks, availability, and toxicity of heavy metals. The modified ecological risk index indicated that all dumping sites had very high potential ecological risks. It is necessary to decrease the availability of heavy metals to reduce the impact of waste materials on environment.  相似文献   

11.
Introduction – Plants can be used as bioindicators in the study of contamination processes by heavy metals. Most of the analytical methodologies used for determination of metals in plants are based on atomic techniques with previous wet digestion of the solid samples. Methodologies that allow direct metal measurements in solid samples are very attractive alternatives. Objective – To develop a new procedure for direct analysis of copper, nickel, cadmium and lead at very low concentration levels in leaves based on electrothermal atomic absorption spectroscopy (ET‐AAS) with introduction of samples as a slurry. Methodology – In order to obtain accurate and precise results even at very low concentrations, the different parameters that influence the sample slurry preparation such as acid percentage, presence of stabilising agents and ultrasonic probe operation were studied. Instrumental parameters such as chemical modifier and temperature and times for drying, pyrolysis and atomisation steps that influence ET‐AAS measurement were optimised. Results – Optimal slurry conditions for copper and nickel determination were 0.5% Tween 85 with 5% nitric acid. For lead and cadmium analysis the best results were obtained in 5% nitric acid without stabilising agents. The achieved detection limits were 0.023 mg/kg for copper, 0.018 mg/kg for nickel, 0.0002 mg/kg for cadmium and 0.009 mg/kg for lead. For validation purposes, the method was applied to metal analysis in a pine needles reference material. Conclusion – According to our knowledge, the detection limits obtained are the best reported in the literature. The methodology was successfully used in metal determinations in actual leaf samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The study measured the concentration of Cd, Cr, Pb, Cu, and Zn in various fish tissues (muscle, gills, and liver) of 18 fish species (C. gachua, C. marulius, C. punctatus, C. nama, C. ranga, H. fossilis, C. batrachus, P. ticto, P. phutunio, L. rohita, L. calbasu, L. gonius, T. putitora, T. tor, R. rita, G. chapra, H. ilisa, and N. botia) collected from Ganga river. It is the survey regarding metal concentration in fish tissues increasing day by day. The metal concentration in different fish tissues varied on the following range: Cu (0.45–8.54 µg/g wet wt), Zn (0.07–2.2 µg/g wet wt), Pb (0.20–2.62 µg/g wet wt), Cd (0.07–2.32 µg/g wet wt), and Cr (0.09–1.74 µg/g wet wt). The results show the concentration of Pb, Cd, and Cr metals to be higher than internationally recommended standard limits (as determined by the WHO and FAO) and other similar studies. Generally, higher concentrations of metals were found in liver and gills than muscles. Despite lower estimated daily intake (EDI) of fish in the area (per recommended daily allowance guidelines), values of daily average consumption were lower than the recommended values by FAO/WHO/EFSA, and in fish samples these were below the provisional permissible levels for human consumption. The continuous exposure to heavy metals has been linked to the development of mental retardation, kidney damage, various cancers, and even death in instances of very high exposure in human body.  相似文献   

13.
This study aimed to investigate the Pb and Cd contamination and health risk assessment for population via consumption of vegetables sold in fresh markets around the lower north of Thailand. The concentrations of Pb and Cd in various vegetables such as root/tuber, stem, inflorescence, fruit, and leaf vegetables were analyzed using an atomic absorption spec-trophotometer. Human health risks of these metals in vegetables were assessed based on target hazard quotient (THQ). The results indicated that more than 80% of the Pb and Cd in almost all vegetable samples exceeded the maximum allowable concentration by National Food Institute criteria with an average range of 0.96–3.39 and 0.48–1.40 mg/kg, respectively. The estimated daily intakes (EDI) of Pb and Cd via dietary consumption of vegetables were between 0.001–0.010 and 0.002–0.008 mg/kg/d, respectively. All EDIs of Pb contaminated vegetables were higher than the reference dose recommended by the USEPA except for leaf edible vegetables, while all EDIs of Cd contaminated vegetables were higher than the reference dose recommended by the USEPA. THQ indicated that the consumption of Pb contaminated root/tuber, stem, inflorescence, and fruit edible vegetables and Cd contaminated leaf vegetable for the local population in the lower north of Thailand could be a severe health risk problem.  相似文献   

14.
长沙城市森林土壤7种重金属含量特征及其潜在生态风险   总被引:10,自引:0,他引:10  
方晰  唐志娟  田大伦  项文化  孙伟军 《生态学报》2012,32(23):7595-7606
采用调查分析方法,研究长沙城市森林土壤Zn、Cu、Ni、Pb、As、Cd、Hg7种重金属含量,并以长沙市土壤背景值和湖南省土壤背景值为参比值,采用Hakanson潜在生态危害指数法评价不同城市化梯度森林土壤重金属潜在生态风险.结果表明:7种重金属的平均含量均随着城市化程度提高而增加,Pb增幅最大,As增幅最小.同一城市化梯度森林土壤均以Zn平均含量最高,Cd最低,但均未超过土壤环境质量标准(GB15618-1995)Ⅱ级标准值.在城市中心区,桂花树林、樟树+桂花树混交林土壤Zn、Cu、Pb、As、Hg平均含量普遍较高,而樟树+马尾松混交林、桂花树+杜英混交林土壤Cu、Ni、As、Cd、Hg平均含量普遍较低,Pb、Zn空间分布差异明显,Cd、Ni、As空间分布比较均匀,Cu、Ni、Pb、As、Cd、Hg之间(除Cd与As、Ni之间外)均存在显著(P<0.05)或极显著(P<0.01)的相关性,与土壤有机质之间也呈显著(P<0.05)或极显著(P<0.01)的相关性,Zn、Cu、Ni、Pb、As、Cd、Hg主要是人为输入;中心区森林土壤重金属的潜在生态危害已达到中等生态危害程度,边缘区接近中等生态危害程度,郊区为轻微生态危害程度,Zn、Cu、Ni、Pb、As均为轻微生态危害程度,Cd、Hg已达到中等生态危害程度以上.  相似文献   

15.
This study was conducted to survey the levels of cadmium (Cd) and lead (Pb) in the main foods of Isfahan province (central Iran). The rice grains and wheat breads were collected from Isfahan city and villages around the Isfahan and Mobarakeh Steel companies. The food samples were wet-ashed by heating in the presence of concentrated nitric acid and hydrogen peroxide. The concentrations of Cd and Pb were determined by inductively coupled plasma-optical emission spectrometer (ICP-OES). The potential exposure risks were then estimated. Levels of Cd in the rice grains and Pb in the investigated foods (except Sangak beard) were above the maximum levels as set by the Codex Alimentarius and National standards of Iran. The wheat bread samples in Isfahan city and Mobarakeh Steel regions presented higher estimated weekly intake (EWI) of Pb (40.93 and 35.35 µg kg–1 body weight, respectively) compared to other foods. The EWI for Cd and Pb in most samples was considerably above than the provisional tolerable weekly intake. In most cases, the target hazard quotients values were above one and consequently the consumption of foods in the investigated regions was a potentially serious health risk caused by exposure to the crops contaminated with Cd and Pb.  相似文献   

16.
鄱阳湖流域的生态健康是维系长江下游区域生态安全的重要保障,而流域内丰富的重金属矿排放的工业废水会对流域生态健康产生巨大威胁。通过对不同级别河流水体中8种重金属(As、Cr、Fe、Mn、Mo、Pb、Se和V)的浓度进行监测,分析和探讨鄱阳湖流域河流重金属污染状况、来源及迁移输出特征,评估通江河流重金属迁移运输对鄱阳湖流域生态健康的影响。研究结果表明:鄱阳湖流域内梅罗综合污染指数平均值为2.67,属于中度污染,丰水期污染情况较为严重,污染指数在4.14-4.74之间,处于重度污染水平,水体主要污染元素是V和Se,V的最大浓度达331.90 μg/L,超过国家水质标准(50 μg/L)6.64倍。重金属浓度和由季节差异造成的水文特征变化是控制流域重金属输出通量的主要原因,而小流域的重金属输出通量对丰枯水期的响应更为敏感。香溪对架竹河、架竹河对赣江以及赣江对鄱阳湖的重金属输出通量分别为7.30 kg/km2、4.06 kg/km2和28.10 kg/km2。不同尺度流域对下游的重金属输出贡献率与径流量相关,丰水期,香溪流域对下游架竹河流域重金属输出的贡献率为1.10%,架竹河对赣江的贡献率为0.02%,而在枯水期,上述贡献率分别为1.61%和0.02%。主成分分析表明鄱阳湖流域水体溶解态重金属的主要污染来源为工业采矿,因此,在预防和治理鄱阳湖流域水体重金属污染问题时,应重点控制工业污染来源。  相似文献   

17.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

18.
One of the problematic issues in soil pollution studies is heavy metal particles which are produced by mines and smelting units and spread through wind action and/or runoff. Pollution and health risk assessment of cadmium, lead, zinc, copper, and nickel in soil around the lead and zinc smelting factory was carried out in Zanjan City, Iran. Contamination factor (Cf), pollution load index (PLI), geoaccumulation index (Igeo), hazard quotient (HQ), hazard index (HI), and carcinogenic risk were pollution and human health risk assessment metrics in this study. Based on the Iranian soil guideline value, soil samples in the studied areas were contaminated the least by copper and nickel and the most by cadmium. PLI results showed that soils near the production line were heavily or extremely heavily polluted. The results of Cf and Igeo showed that lead and zinc were the most important contaminants. Health risk assessment indicated that lead and cadmium in soil were the main contaminants, which pose both carcinogenic and non-carcinogenic risks to human health; carcinogenic risk levels were unacceptably high (above 1 × 10?4). It can be concluded that mining and smelting activities degrade soil quality in this region and the soil pollution might be extended to farming areas.  相似文献   

19.
20.
This study was done to evaluate heavy metal concentrations in street dust samples, to compare measured concentrations in samples to background concentrations in order to make evaluations for pollution indices, and to describe the quality of street dust in the studied area in relation to pollution. A total of 30 cumulative samples were collected from the streets of Eslamshahr City. Concentrations of heavy metals were determined using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results determined mean concentrations (mg/kg) of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn, in collected samples of street dust as 0.34, 35.1, 239, 42.4, 71.3, and 573, respectively. Igeo values for Cd and Cr, Cu, Ni, Pb, and Zn showed level of moderately polluted, unpolluted, moderately to strongly polluted, unpolluted, moderately polluted and moderately to strongly polluted, respectively. The pattern of total metal concentrations in the studied area was ranked as follows: Zn and Cu>Pb>Cd>Ni>Cr. The highest values for the monomial potential ecological risk (Er) were observed for Cd (114). The mean level of RI for the studied soil samples was 192 (91.3–244), which is classed as presenting a strong potential ecological risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号