首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

2.
The levels of essential (Ca, Mg, Mn, Fe, Zn, Cr, Cu, and Co) and non-essential (Cd and Pb) metal in six different varieties of Ethiopian khat (Catha edulis Forsk, an evergreen stimulant plant) commonly consumed in the country and exported to the neighboring countries were determined by flame atomic absorption spectrometry. Known weight of oven-dried khat samples were wet-digested using 2 mL of (69–72%) HNO3 and 2 mL of (70%) HClO4 for 2 h and 30 min at variable temperature (120–270°C). The mineral contents in the digests were analyzed using flame atomic absorption spectrometer. The following concentrations ranges in fresh-weight basis were recorded in decreasing order: Ca (1,038–2,173 µg/g)?>?Mg (478.2–812.3 µg/g)?>?Fe (53.95–82.83 µg/g)?>?Zn (5.18–9.40 µg/g)?>?Mn (6.98–8.66 µg/g)?>?Cu (1.85–5.53 µg/g)?>?Cr (0.66–3.47 µg/g)?>?Co (0.41–0.80 µg/g). A wide variation in the mineral contents of khat from different region of Ethiopia was noticed. The toxic metals (Pb and Cd) were not detected in all the samples analyzed.  相似文献   

3.
A campaign was conducted to assess the PM1 concentration and elemental composition on the platforms and adjacent outdoor areas of an underground subway station (Imam Khomeini) and a surface subway station (Sadeghiye) in Tehran from June 2014 to November 2014. The respective mean concentrations of PM1 on the platforms and in the outdoor areas of Imam Khomeini station were 42.04 and 30.92 µg/m3 and for Sadeghiye station 31.42 and 26.02 µg/m3. Statistical analyses demonstrated that the platforms of the Imam Khomeini and Sadeghiye stations were influenced by the adjacent ambient air of these stations (p < 0.05). PM1 was found to be highly enriched with Fe on the platforms of metro systems, which were more frequently encountered in the Imam Khomeini station than the Sadeghiye station as 41.06% and 37.73% of the total PM1 mass respectively. Minor elements, particularly Ba, Pb, Cr, Cu, Ni, Mn, Ti, V, and Zn, were elevated for the platform of Imam Khomeini and, to a lesser degree, the platform of Sadeghiye stations, which may be due to abrasion processes between rail tracks, wheels, and brake pads.  相似文献   

4.
The study measured the concentration of Cd, Cr, Pb, Cu, and Zn in various fish tissues (muscle, gills, and liver) of 18 fish species (C. gachua, C. marulius, C. punctatus, C. nama, C. ranga, H. fossilis, C. batrachus, P. ticto, P. phutunio, L. rohita, L. calbasu, L. gonius, T. putitora, T. tor, R. rita, G. chapra, H. ilisa, and N. botia) collected from Ganga river. It is the survey regarding metal concentration in fish tissues increasing day by day. The metal concentration in different fish tissues varied on the following range: Cu (0.45–8.54 µg/g wet wt), Zn (0.07–2.2 µg/g wet wt), Pb (0.20–2.62 µg/g wet wt), Cd (0.07–2.32 µg/g wet wt), and Cr (0.09–1.74 µg/g wet wt). The results show the concentration of Pb, Cd, and Cr metals to be higher than internationally recommended standard limits (as determined by the WHO and FAO) and other similar studies. Generally, higher concentrations of metals were found in liver and gills than muscles. Despite lower estimated daily intake (EDI) of fish in the area (per recommended daily allowance guidelines), values of daily average consumption were lower than the recommended values by FAO/WHO/EFSA, and in fish samples these were below the provisional permissible levels for human consumption. The continuous exposure to heavy metals has been linked to the development of mental retardation, kidney damage, various cancers, and even death in instances of very high exposure in human body.  相似文献   

5.
Abstract

Shanxi is a heavily polluted area in China. Our aim was to analyze the elemental concentration (71 elements) in ambient air in Taiyuan and evaluate cancer and non-cancer risks. Air was sampled in four urban sites and one rural site in the heating season (winter/spring) and summer season (totally 118?days sampling time). Mean total suspended particles (TSP) across all sampling sites were 248 µg/m3 in summer and 478 µg/m3 in winter. The heating season had higher levels of S, Pb, Br, Mn, Se, As, Ni, Cd, and Hg (23.3 µg/m3, 821?ng/m3, 725?ng/m3, 460?ng/m3, 79?ng/m3, 65?ng/m3, 34?ng/m3, 17?ng/m3, and 3.5?ng/m3, respectively) than the summer season (9.6 µg/m3, 276?ng/m3, 138?ng/m3, 283?ng/m3, 0?ng/m3, 21?ng/m3, 21?ng/m3, 6.8?ng/m3, and 0?ng/m3, respectively), except for Cr and Co, of which the levels were higher in summer. Many elements had a high correlation with the TSP level (r?=?0.70–0.96) and S (r?=?0.61–0.95). A health risk assessment demonstrated that Mn and Cr could have a risk of non-cancer effects. Estimated lifetime cancer risks (Ri>10?6) were observed for As, Cd, Co, Cr, and Ni, indicating that cancer risks from air pollution were relatively high in Taiyuan.  相似文献   

6.
7.
The characterization of indoor (a naturally ventilated office) and outdoor (adjacent courtyard) metals in PM2.5 during a winter period in Xi'an, China were carried out. The results indicated that the average mass concentrations of PM2.5 in indoor and outdoor environments all exceeded the daily average limit of 75 µg m–3 set by the Chinese government. The dominant metals in PM2.5 were Ca, Al, Zn, Mg, Fe, and Pb in both indoor and outdoor air. Concentration of As was much higher than the standard of 6 ng m–3 issued by the government. Enrichment factor analysis showed that anthropogenic emissions might be the primary sources of As, Cd, Pb, and Zn, while crust was the main origin of Co. A majority of indoor-to-outdoor concentration ratios of metal were lower than 1 indicating mostly the contribution of outdoor sources rather than indoor ones. As and Cr in both indoor and outdoor air posed the highest noncarcinogenic and carcinogenic risks, respectively. The noncarcinogenic and carcinogenic risks were 2.74 and 2.54 × 10?4 indoor and 4.04 and 3.87 × 10?4 outdoor, which suggested that possible adverse health effects should be of concern.  相似文献   

8.
Contamination of soils by heavy metals due to urbanization increases various environmental concerns. The objective of this research was to determine the potential sources of heavy metals in agricultural soils in the vicinity of a small-scale industrial area and to assess their environmental impacts. Soil samples were obtained from 15 different locations near a small industrial area in the Çanakkale province of Turkey. Heavy metal (Cd, Co, Cu, Ni, Pb, Zn) contents of soil samples were determined with four different geochemical fractions via a sequential extraction procedure. The results revealed that pseudo-total heavy metal concentrations were ordered in decreasing order as Zn > Pb > Cu > Ni > Co > Cd. Considering the results, Cd (1.95 ± 0.12 µg/g), Pb (39.21 ± 2.14 µg/g) and Zn (64.99 ± 8.16 µg/g) values were above the normal values specified for agricultural lands. The findings obtained from sequential extraction procedure showed that Cd (78%) and Pb (65%) existed mostly in mobile phases. Such mobile phases originated mostly from anthropogenic sources. These findings were also supported by chemometric analyses. Risk assessments pointed out that while Pb and Zn have moderate risks on the environment, Cd creates high risks.  相似文献   

9.
Abstract

Quantification of PM2.5 (particulate matter <2.5?µm) bound heavy metals and their potential health risks were carried out around a cement manufacturing company in Ewekoro, Nigeria. The PM2.5 samples were collected using Environtech gravimetric sampler. A four-staged sequential extraction procedure was used to fractionate PM2.5 bound chromium (Cr), lead (Pb), aluminum (Al), copper (Cu), and silver (Ag), and further analyzed using inductively coupled plasma mass spectrometry. Chemical speciation results reveal bioavailable levels of Pb (4.05?µg/m3), Cr (10.75?µg/m3), Al (16.47?µg/m3), Cu (4.38E-01?µg/m3), and Ag (1.22E-02?µg/m3) in the airborne particulates. Pb and Cr levels exceeded the World Health Organization allowable limit of 0.5 and 2.5E-05?µg/m3, respectively. The labile phases showed strong indication of the presence of Cr and Cu metal. Excess cancer risks exposure for adults, outdoor workers and children were higher than the acceptable risk target level of 1E-06. Non-carcinogenic health risk estimated using hazard quotients (HQs) and hazard indices (HIs) showed ingestion route within the safe level of HI <1 implying no adverse effect while inhalation route exceeded the safe level for all receptors. Enforcement of pollution control by authorized agencies, and screening of greenbelts as sinks for air pollutants is strongly recommended.  相似文献   

10.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

11.
With the aim to know possible risks to the population, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Tl were determined for the first time in airborne samples of particulate matter in an urban zone in Tampico, México, during the winter of 2003. The 24-hour PM10 samples were collected every 6 days on quartz-filters by using a high volume sampler and analyzed by Inductively Coupled Plasma Optical Emission Spectrometer. Standard reference material was used to verify metal recovery. The maximum PM10 and lead concentrations were 12.05 and 0.040 μ g/m3, respectively, not exceeding Méxican standard values. The greatest metal concentration was that of manganese with 0.90 μ g/m3, followed by Cu and Ni with 0.17 and 0.012 μ g/m3, respectively. Agglomerates, well-defined particles, and heavy metals (e.g., Mn and Cu) were found in PM10 using Scanning Electron Microscopy and Energy Dispersive Spectroscopy. Meteorological conditions associated with the sampling period showed that Pb and Ni are being continuously emitted, and that Mn, Cu, and Co could come from one industry located to the WSW of the region. All of these concentrations do not constitute a potential risk to human health, although it is necessary to continue studying the high concentrations of Mn and Cu in longer sampling periods.  相似文献   

12.
Metal contamination in sediment of the Mianyuan River (one of the major upper reaches of the Yangtze River) in Longmenshan Region (China) was investigated in 2012. Means of metal concentrations in sediment (<74μm) were Cr: 59.93 ± 19.8% mg/kg; As: 7.21 ± 50.2% mg/kg; Se: 0.45 ± 66.3% mg/kg; Pb: 19.89 ± 29.3% mg/kg; Zn: 78.98 ± 31.9% mg/kg; Cd: 0.69 ± 28.3% mg/kg; Ba: 0.71 ± 34.0% g/kg; Mn: 0.55 ± 62.2% g/kg. This study suggested: (1) concentrations of Cd, As, Cr, and Pb in Mianyuan River sediment were lower than those of the middle and lower reaches of the Yangtze River; (2) the increase of metals during the period from 2006 to 2009 was probably related to the destruction of tailings piles by the Wen Chun earthquake in 2008; (3) organic materials decided the distribution of Cd, Se, As, Ba, and Mn in the upstream sediment, while the iron and manganese minerals controlled the distribution of Ba, Cr, and Zn in the downstream sediment; (4) sources of Cd, Se, and As were geogenic, while sources of Cr, Zn, Ba, and Mn were anthropogenic; (5) the source of Pb in the upstream sediment was probably automobile exhaust, but that of Pb in the downstream sediment was geogenic.  相似文献   

13.
The respiration of dissolved organic matter (DOM) by aerobic heterotrophic bacterioplankton in boreal surface waters is one of the major factors that regulate CO2 exchange of lakes and rivers with the atmosphere in arctic and subarctic zones. The DOM that originates from topsoil leaching and vegetation degradation is brought to the lakes by surface flow and is subjected to coagulation and degradation by heterotrophic bacteria, which are well-established processes in the majority of boreal aquatic settings. The behavior of colloids and organic complexes of trace metals during this process is virtually unknown. In this work, we studied the interaction of two model heterotrophic bacteria, soil Pseudomonas aureofaciens and aquatic Pseudomonas reactans, with peat and Sphagnum moss leachates from the permafrost region under controlled laboratory conditions in nutrient-free media. The moss leachate was the better substrate for bacterial survival, with P. reactans exhibiting an order of magnitude higher live cell number compared with P. aureofaciens. In eight-day experiments, we analyzed organic carbon and ~40 major and trace elements (TEs) during heterotrophic bacteria growth. The total net decrease in the concentration of dissolved organic carbon (DOC) was similar for both bacteria and ranged from 30 mg gwet?1 to ≤10 mg gwet?1 during 8 days for the moss and peat leachate, respectively. Despite significant evolutions of pH, DOC, dissolved inorganic carbon (DIC), and cell number, most major (Mg, K, and Ca) and TEs remained nearly constant (within ±30% of the control). Only Fe, Al, P, Zn, Mn, Co, and Ba and to a much lesser extent Cd, Pb, Rare Earth Elements (REEs), U, Ti, and Zr were affected (p??1 to µg L?1 and followed the order DOC >> P >> Ba > Zn ≥ Fe ≥ Al > Mn > Cu ≥ Sr > Zr ≥ Ti > Ni ≥ Co > REEs ≥ U > Hf~Th, which reflected the abundance of the elements in the two substrates. Generally, the soil exopolysaccharide producing bacterium P. aureofaciens in the peat leachate had the greatest impact of the four combinations investigated in this study (two bacteria with two substrates). Under ongoing environmental changes in the boreal zone, the autochthonous processes of bacterioplankton activity are able to decrease the concentrations of a very limited number of TEs, including mainly Fe and several macro- (P) and micro- (Zn, Mn, and Ba) nutrients.  相似文献   

14.
The air PM2.5 concentration and its heavy metal content (Fe, Pb, Mn, Ni, As) were measured in the Metropolitan Area of Monterrey, Méxicoin Mexico, an area that is characterized by both very active and diverse industrial activity and intense highway traffic and industrial activity. The 24-h PM2.5 samples were collected in two different zones during a 1-year-long measurement program (February 2008–February 2009). The year PM2.5 average was above 15 μg/m3 exceeding Mexican and international standards. The difference of PM2.5 in each zone was not statistically significant. The greatest metal content was for iron, followed by lead, manganese, nickel and arsenic. The difference in metal content for Pb, Mn, and As was statistically significant.  相似文献   

15.
Fifteen polycyclic aromatic hydrocarbons (PAHs) and heavy metals (Cr, Ni, As, Cd, Pb, and Hg) were quantified in 19 surface water sites of the Three Gorges Reservoir, China. The total concentrations of 15 PAHs and six heavy metals in the 19 sample sites ranged from 130.8 ng L?1 to 227.5 ng L?1 and 3.2 μg L?1 to 6.0 μg L?1, respectively. The mean concentration of As was the highest among the six heavy metals (2.1 ± 0.3 μg L?1), followed by Cr (0.5 ± 0.3 μg L?1), Ni (1.3 ± 0.1 μg L?1), Cd (0.2 ± 0.01 μg L?1), Pb (0.07 ± 0.08 μ g L?1) and Hg (0.05 ± 0.08 μg L?1). The isomer ratio results suggest that PAHs at most sites were mainly from petroleum combustion, while coal and biomass combustion was the main source at sites 1, 2, 6, 7, 9, 14, and 17. Based on principal component analysis, the main source of heavy metals was anthropogenic activities and weathering of bedrocks. Depending on characteristic of RQ(NCs) ≥ 1 and RQ(MPCs) < 1, BaA showed higher potential ecological risk than other PAHs, therefore, all sampling site needed to be paid much more attention, included some remedial actions. Meanwhile, after assessing human health risk of heavy metal, it was unlikely to experience adverse health effects, even exposing through more pathways and six kinds of heavy metals simultaneously.  相似文献   

16.
The levels of mineral element Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Al, As, Ag, Cd, and Tl were quantified in the whole shells of the freshwater bivalve Anodonta woodiana at three different growth stages (i.e. J1 juveniles of 1 month old, J2 juveniles of 3.5 months old, and adults of 36 months old). The concentrations of Na and Al were different between different growth stages (p < 0.05). The highest Na concentrations (2715 ± 86 μg/g dry weight) were found in J2 juveniles. The highest Al concentrations (303.9 ± 5.95 μg/g dry weight) were found in J1 juveniles. Manganese concentrations (517.0 ± 47.98 μg/g dry weight) were significantly higher in J2 juveniles than in J1 juveniles (432.3 ± 9.87 μg/g dry weight) (p < 0.05). Copper concentrations (27.32 ± 0.15 μg/g dry weight) were significantly higher in J1 juveniles than in J2 juveniles (26.21 ± 0.86 μg/g dry weight) and adults (24.74 ± 1.43 μg/g dry weight) (p < 0.05). Burdens of Na, Ca, Mn, Fe, Co, Cu, Mo, Ag, and Tl were positively correlated with the shell length (p < 0.05). These findings can possibly contribute to an understanding of elemental requirements for shell growth and, hence, facilitate improvement of survival and growth rates during artificial mussel culture.  相似文献   

17.
Antioxidant activity of the aerial part and bulbs of Allium paradoxum was investigated by eight in vitro assay systems. Extracts showed good antioxidant activity. IC50 for 1,1-diphenyl-2-picryl hydrazyl radical-scavenging activity was 890.9±43.2 and 984.9±33.5 μg/ml for the aerial part and bulbs, respectively. The aerial parts have better reducing power than bulb extracts but not comparable with Vitamin C (P>0.001). Extracts showed weak Fe2+ chelating ability, the IC50 being 959±47 and 530±24 μg/ml for bulbs and aerial parts, respectively. Both tested extracts exhibited good hydrogen peroxide scavenging in a concentration dependent manner. They exhibited good antioxidant activity against the hemoglobin-induced linoleic acid system that was comparable with vitamin C (P>0.01). They showed good activity against cumene hydro peroxide induced hemolysis in RBCs. In addition, they possessed antihemolytic activity. The extract from aerial parts had significantly higher total phenol and flavonoid content than did bulbs. Amounts of eight elements (Cu, Mn, Zn, Fe, Ni, Pb, Cd and Cr) were also determined in the bulb and aerial part using atomic absorption spectroscopy. They contained higher Fe and Mn contents than other elements.  相似文献   

18.
The contents of some selected metals Ca, Mg, Fe, Mn, Co, Cu, Zn, Ni, and Cd in different thyme leaf samples widely consumed in Ethiopia were determined by flame atomic absorption spectroscopy (FAAS) after acid digestion with 1:1 HNO3/HClO4 for 3 h at a temperature of 240°C by a Kjeldahl apparatus hot plate digester. The level of the nutrients in the four samples ranged from 1,239–2,517 μg/g, Ca; 1,524–1,786 μg/g, Mg; 728–2,517 μg/g, Fe; 37.7–114 μg/g, Mn; 2.59–4.3 μg/g, Co; 7.69–9.3 μg/g, Cu; 8.7–52 μg/g, Zn; and 9.83–14.2 μg/g, Ni; respectively. While the level of toxic metal Cd in the four samples ranged from 0.87–1.3 μg/g. The concentration of Ca was higher than the other metals in the three samples and Cd was the least of all the metals in the analyzed samples. The overall reproducibility of the method obtained from spiking experiment was within the range ±10%. This result will complement available data on food composition in Ethiopia.  相似文献   

19.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

20.
The Pb, Cd, Cu, Zn, and Mn contents of the liver, spleen, muscle, bones, scales, gills, and the whole body of 3- to 7-year-old notothenioid Antarctic cod (Notothenia coriiceps, Richardson, 1844) were measured. The highest heavy metal concentrations obtained are as follows: Cd in liver, the mean value was 1.36 ± 0.19 mg/kg dry weight (wt); Pb and Zn in spleen, the mean values were 3.33 ± 0.86 and 143.97 ± 16.17 mg/kg dry wt, respectively; Cu in gills, 3.76 ± 1.16 mg/kg dry wt; and Mn in scales, 14.80 ± 4.77 mg/kg dry wt. The comparison with the data reported up to now shows that the metal concentrations varied within relative wide ranges. These first data obtained could be used as a baseline to investigate further relationships among metal contents in fish, their diet, and habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号