首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts.  相似文献   

2.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Four novel octreotide analogs with cell‐penetrating peptides (CPPs) at the N‐terminus or C‐terminus were synthesized by a stepwise Fmoc solid‐phase synthesis strategy. The synthesized peptides were analyzed and characterized using reverse phase HPLC and MALDI‐TOF mass spectrometry. The antiproliferative activity of the analogs was tested in vitro on human gastric (SGC‐7901) and hepatocellular cancer (BEL7402) cell lines using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Interestingly, these analogs showed a higher anticancer activities than the parent octreotide except CMTPT03 analog. The results demonstrate that the designed octreotide analogs enhance their anticancer activity after linking together the CPPs to octreotide at the N‐terminus, and are potential molecules for future use in cancer therapy and drug targeting. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Nguyen PH  Mu Y  Stock G 《Proteins》2005,60(3):485-494
A replica exchange molecular dynamics (REMD) simulation of a bicyclic azobenzene peptide in explicit dimethyl sulfoxide solution is presented in order to characterize the conformational structures and energy landscape of a photoswitchable peptide. It is shown that an enhanced-sampling technique such as the REMD method is essential to obtain a converged conformational sampling of the peptide at room temperature. This is because conventional MD simulations of less than approximately 100-ns length are either trapped in local minima (at 295 K) or-if run at high temperature-do not resemble the room-temperature REMD results. Calculating various nuclear Overhauser effects (NOEs) and (3)J-couplings, a good overall agreement between the REMD simulations and the NMR experiments of Renner et al. (Biopolymers 2000;54:501-514) is found. In particular, the REMD study confirms the general picture drawn by Renner et al. that the trans-isomer of the azobenzene peptide exhibits a well-defined structure, while the cis-isomer is a conformational heterogeneous system; that is, the trans-isomer occurs in 2 well-defined conformers, while the cis-isomer represents an energetically frustrated system that leads to an ensemble of conformational structures. Employing a principal component analysis of the REMD data, the free energy landscape of the systems is studied at various temperatures. The implications for the folding and unfolding pathways of the system are discussed.  相似文献   

5.
Falcipain‐2 (FP‐2) is a major hemoglobinase of Plasmodium falciparum, considered an important drug target for the development of antimalarials. A previous study reported a novel series of 20 reversible peptide‐based inhibitors of FP‐2. However, the lack of tridimensional structures of the complexes hinders further optimization strategies to enhance the inhibitory activity of the compounds. Here we report the prediction of the binding modes of the aforementioned inhibitors to FP‐2. A computational approach combining previous knowledge on the determinants of binding to the enzyme, docking, and postdocking refinement steps, is employed. The latter steps comprise molecular dynamics simulations and free energy calculations. Remarkably, this approach leads to the identification of near‐native ligand conformations when applied to a validation set of protein‐ligand structures. Overall, we proposed substrate‐like binding modes of the studied compounds fulfilling the structural requirements for FP‐2 binding and yielding free energy values that correlated well with the experimental data. Proteins 2017; 85:1666–1683. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
A 12‐mer peptide nucleic acid (PNA) directed against the nociceptin/orphanin FQ receptor mRNA was disulfide bridged with various peptides without and with cell‐penetrating features. The cellular uptake and the antisense activity of these conjugates were assessed in parallel. Quantitation of the internalized PNA was performed by using an approach based on capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF). This approach enabled a selective assessment of the PNA moiety liberated from the conjugate in the reducing intracellular environment, thus avoiding bias of the results by surface adsorption. The biological activity of the conjugates was studied by an assay based on the downregulation of the nociceptin/orphanin FQ receptor in neonatal rat cardiomyocytes (CM). Comparable cellular uptake was found for all conjugates and for the naked PNA, irrespective of the cell‐penetrating properties of the peptide components. All conjugates exhibited a comparable biological activity in the 100 nM range. The naked PNA also exhibited extensive antisense activity, which, however, proved about five times lower than that of the conjugates. The found results suggest cellular uptake and the bioactivity of PNA‐peptide conjugates to be not primarily related to the cell‐penetrating ability of their peptide components. Likewise from these results it can be inferred that the superior bioactivity of the PNA‐peptide conjugates in comparison with that of naked PNA rely on as yet unknown factors rather than on higher membrane permeability. Several hints point to the resistance against cellular export and the aggregation propensity combined with the endocytosis rate to be candidates for such factors. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we report the results of molecular dynamics simulations of AXH monomer of Ataxin‐1. The AXH domain plays a crucial role in Ataxin‐1 aggregation, which accompanies the initiation and progression of Spinocerebellar ataxia type 1. Our simulations involving both classical and replica exchange molecular dynamics, followed by principal component analysis of the trajectories obtained, reveal substantial conformational fluctuations of the protein structure, especially in the N‐terminal region. We show that these fluctuations can be generated by thermal noise since the free energy barriers between conformations are small enough for thermally stimulated transitions. In agreement with the previous experimental findings, our results can be considered as a basis for a future design of ataxin aggregation inhibitors that will require several key conformations identified in the present study as molecular targets for ligand binding. Proteins 2016; 84:52–59. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB‐552, a novel cell‐penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor‐bearing mice. Studies of protein–peptide interactions have shown that COMMD1 protein is a major mediator of CIGB‐552 antitumor activity. Furthermore, a typical serine‐protease degradation pattern for CIGB‐552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB‐552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB‐552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF‐7 cells. None of the analyzed metabolites proved to be as effective as CIGB‐552 in promoting apoptosis in MCF‐7. Taking into account these results, it seemed important to examine their cell‐penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding‐dependent process, is impaired as well as metabolite–COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB‐552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Some Vinca alkaloids (eg, vinblastine, vincristine) have been widely used as antitumor drugs for a long time. Unfortunately, vindoline, a main alkaloid component of Catharanthus roseus (L.) G. Don, itself, has no antitumor activity. In our novel research program, we have prepared and identified new vindoline derivatives with moderate cytostatic activity. Here, we describe the effect of conjugation of vindoline derivative with oligoarginine (tetra‐, hexa‐, or octapeptides) cell‐penetrating peptides on the cytostatic activity in vitro and in vivo. Br‐Vindoline‐(l )‐Trp‐OH attached to the N‐terminus of octaarginine was the most effective compound in vitro on HL‐60 cell line. Analysis of the in vitro activity of two isomer conjugates (Br‐vindoline‐(l )‐Trp‐Arg8 and Br‐vindoline‐(d )‐Trp‐Arg8 suggests the covalent attachment of the vindoline derivatives to octaarginine increased the antitumor activity significantly against P388 and C26 tumour cells in vitro. The cytostatic effect was dependent on the presence and configuration of Trp in the conjugate as well as on the cell line studied. The configuration of Trp notably influenced the activity on C26 and P388 cells: conjugate with (l )‐Trp was more active than conjugate with the (d )‐isomer. In contrast, conjugates had very similar effect on both the HL‐60 and MDA‐MB‐231 cells. In preliminary experiments, conjugate Br‐vindoline‐(l )‐Trp‐Arg8 exhibited some inhibitory effect on the tumor growth in P388 mouse leukemia tumor‐bearing mice. Our results indicate that the conjugation of modified vindoline could result in an effective compound even with in vivo antitumor activity.  相似文献   

10.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

11.
It is known that the half life of the tumor suppressor p53 can be increased by the interaction with the bacterial protein azurin, resulting in an enhanced anti‐tumoral activity. The understanding of the molecular mechanisms on the basis of this phenomenon can open the way to new anti‐cancer strategies. Some experimental works have given evidence of an interaction between p53 and azurin (AZ); however the binding regions of the proteins are still unknown. Recently, fluorescence studies have shown that p53 partakes in the binding with the bacterial protein by its N‐terminal (NT) domain. Here we have used a computational method to get insight into this interacting mode. The model that we propose for the best complex between AZ and p53 has been obtained from a rigid‐body docking, coupled with a molecular dynamics (MD) simulation, a free energy calculation, and validated by mutagenesis analysis. We have found a high degree of geometric fit between the two proteins that are kept together by several hydrophobic interactions and numerous hydrogen bonds. Interestingly, it has emerged that AZ binds essentially to the helices HI and HIII of the p53 NT domain, which are also interacting regions for the foremost inhibitor of p53, MDM2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self‐immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli. Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward‐occluded and a new nucleotide‐bound state, high‐energy outward‐occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross‐linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi‐drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic‐level build‐up.  相似文献   

14.
The mechanisms of interfacial folding and membrane insertion of the Alzheimer's amyloid‐β fragment Aβ(25–35) and its less toxic mutant, N27A‐Aβ(25–35) and more toxic mutant, M35A‐Aβ(25–35), are investigated using replica–exchange molecular dynamics in an implicit water‐membrane environment. This study simulates the processes of interfacial folding and membrane insertion in a spontaneous fashion to identify their general mechanisms. Aβ(25–35) and N27A‐Aβ(25–35) peptides share similar mechanisms: the peptides are first located in the membrane hydrophilic region where their C‐terminal residues form helical structures. The peptides attempt to insert themselves into the membrane hydrophobic region using the C‐terminal or central hydrophobic residues. A small portion of peptides can successfully enter the membrane's hydrophobic core, led by their C‐terminal residues, through the formation of continuous helical structures. No detectable amount of M35A‐Aβ(25–35) peptides appeared to enter the membrane's hydrophobic core. The three studied peptides share a similar helical structure for their C‐terminal five residues, and these residues mainly buried within the membrane's hydrophobic region. In contrast, their N‐terminal properties are markedly different. With respect to the Aβ(25–35), the N27A‐Aβ(25–35) forms a more structured helix and is buried deeper within the membrane, which may result in a lower degree of aggregation and a lower neurotoxicity; in contrast, the less structured and more water‐exposed M35A‐Aβ(25–35) is prone to aggregation and has a higher neurotoxicity. Understanding the mechanisms of Aβ peptide interfacial folding and membrane insertion will provide new insights into the mechanisms of neurodegradation and may give structure‐based clues for rational drug design preventing amyloid associated diseases. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Cell‐penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human‐derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin‐binding domain of HB‐EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30‐HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C‐terminus of MAP30 promoted the cellular uptake of recombinant MAP30‐HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30‐induced apoptosis through the activation of the mitochondrial‐ and death receptor‐mediated signaling pathways. In addition, the MAP30‐HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30‐HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB‐EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Antiandrogen flutamide, an antagonist of the wild‐type androgen receptor (AR), is used in the clinics for treating metastatic prostate cancer. However, the T877A mutated AR is paradoxically activated by hydroxyflutamide, an active form of flutamide. Despite of crystallographic studies, how the T877A mutation results in antagonist‐agonist conversion of hydroxyflutamide remains a puzzle. Here, started from a structural model of the apo form of AR ligand‐binding domain (AR‐LBD), we have investigated the impact of the T877A mutation on ligand‐induced helix‐12 positioning by replica‐exchange molecular dynamics (REMD) simulations with an unique protocol, which is capable of simulating the H12 dynamics and keeping the main body of AR‐LBD unchanged. Specifically, (i) we have computationally demonstrated that on the binding of hydroxyflutamide, the apo form of H12 rearranges into the agonistic form in the T877A mutant, but into the antagonistic forms in the wild‐type receptor, shedding light on hydroxyflutamide agonism/antagonism; (ii) By REMD simulations, we have predicted antiandrogen SC184 is a non‐agonist of the T877A mutant. This was confirmed by luciferase assays; and (iii) on the basis of the binding modes of hydroxyflutamide and SC184 from the simulations, we designed a novel flutamide derivative called SC333, which was subsequently predicted to be a pure antagonist of the T877A mutant. We then synthesized and experimentally confirmed SC333 is a pan‐antiandrogen effective against the wild‐type and the T877A and W741C mutated ARs, showing low micromolar cytotoxicity in LNCaP cells. Importantly, we demonstrated that distribution of the H12 conformations from REMD simulations is correlated with ligand agonist/antagonist activity. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Nonviral vector–based gene therapy is a promising strategy for treating a myriad of diseases. Cell‐penetrating peptides are gaining increasing attention as vectors for nucleic acid delivery. However, most studies have focused more on the transfection efficiency of these vectors than on their specificity and toxicity. To obtain ideal vectors with high efficiency and safety, we constructed the vector stearyl‐TH by attaching a stearyl moiety to the N‐terminus of the acid‐activated cell penetrating peptide TH in this study. Under acidic conditions, stearyl‐TH could bind to and condense plasmids into nanoparticle complexes, which displayed significantly enhanced cellular uptake and transfection efficiencies. In contrast, stearyl‐TH lost the capacities of DNA binding and transfection at physiological pH. More importantly, stearyl‐TH and the complexes formed by stearyl‐TH and plasmids displayed no obvious toxicity at physiological pH. Consequently, the high transfection efficiency under acidic conditions and low toxicity make stearyl‐TH a potential nucleic acid delivery vector for gene therapy.  相似文献   

18.
Hsp31 is a stress‐inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high‐affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20‐residue‐long hexahistidine tag to the N‐termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C‐termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging.  相似文献   

19.
Fibrillation of β‐amyloid is recognized as a key process leading to the development of Alzheimer's disease. Small peptides called β‐sheet breakers were found to inhibit the process of β‐amyloid fibrillation and to dissolve amyloid fibrils in vitro, in vivo, and in cell culture studies [1,2]. The mechanism by which peptide inhibition takes place remains elusive and a detailed model needs to be established. Here, we present new insights into the possible role of consecutive Phe residues, present in the structure of β‐sheet breakers, supported by the results obtained by means of MD simulations. We performed a 30‐ns MD of two β‐sheet breakers: iAβ5 (LPFFD) and iAβ6 (LPFFFD) which have two and three consecutive Phe residues, respectively. We have found that Phe rings in these peptides tend to form stacked conformations. For one of the peptides – iAβ6 – the calculated electrostatic contribution to free energy of one of the conformers with three rings stacked (c2) is significantly lower than that corresponding to the unstacked one (c1), two rings stacked (c0) and second conformer with three rings stacked (c3). This may favor the interaction of the c2 conformer with the target on amyloid fibril. We hypothesize that the mechanism of inhibition of amyloidogenesis by β‐sheet breaker involves competition among π‐stacked Phe residues of the inhibitor and π‐stacking within the β‐amyloid fibril. iAβ6 may be a promising candidate for a lead compound of amyloidogenesis inhibitors. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Bacterial resistance induced by the use of antibiotics has provided a chance for the development of antimicrobial peptides (AMPs), and modification of AMPs to enhance the antibacterial activity or stability has become a research focus. PMAP‐37 is an AMP isolated from porcine myeloid marrow, and studies on its modification have not yet been reported. In this study, three PMAP‐37 analogs named PMAP‐37(F9‐R), PMAP‐37(F34‐R), and PMAP‐37(F9/34‐R) were designed by residue substitution to enhance the positive charge. The antimicrobial activity of PMAP‐37 and its analogs in vitro and in vivo were detected. The results showed that compared with PMAP‐37, PMAP‐37(F9‐R) and PMAP‐37(F9/34‐R) exhibited antibacterial activity against S. flexneri CICC21534. Although PMAP‐37(F34‐R) had no antibacterial activity against S. flexneri CICC21534, its minimal inhibitory concentrations (MICs) were significantly lower than those of PMAP‐37 against most bacterial strains. Besides, all PMAP‐37 analogs were pH stable, retaining stable antibacterial activity after treatment with solution from pH 2 to pH 8/9. In addition, the PMAP‐37 analogs displayed increased thermal stability, and PMAP‐37(F34‐R) retained >60% antibacterial activity after boiling for 2 hours. Furthermore, the PMAP‐37 analogs exhibited impressive therapeutic efficacy in bacterial infections by reducing bacterial burden and inflammatory damage in the lung and liver, resulting in a reduction in mortality. Notably, the therapeutic effect of PMAP‐37(F34‐R) was comparable to that of ceftiofur sodium, and even superior to antibiotics in L. monocytogenes CICC21533 infection model. In conclusion, the PMAP‐37(F34‐R) may be a candidate for the treatment of bacterial infections in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号