首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported on a method for the facile removal of 4‐methoxybenzyl and acetamidomethyl protecting groups from cysteine (Cys) and selenocysteine (Sec) using 2,2′‐dithiobis‐5‐nitropyridine dissolved in trifluoroacetic acid, with or without thioanisole. The use of this reaction mixture removes the protecting group and replaces it with a 2‐thio(5‐nitropyridyl) (5‐Npys) group. This results in either a mixed selenosulfide bond or disulfide bond (depending on the use of Sec or Cys), which can subsequently be reduced by thiolysis. A major disadvantage of thiolysis is that excess thiol must be used to drive the reaction to completion and then removed before using the Cys‐containing or Sec‐containing peptide in further applications. Here, we report a further advancement of this method as we have found that ascorbate at pH 4.5 and 25 °C will reduce the selenosulfide to the selenol. Ascorbolysis of the mixed disulfide between Cys and 5‐Npys is much less efficient but can be accomplished at higher concentrations of ascorbate at pH 7 and 37 °C with extended reaction times. We envision that our improved method will allow for in situ reactions with alkylating agents and electrophiles without the need for further purification, as well as a number of other applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The Y1 and Y5 receptors for neuropeptide Y have overlapping functions in regulating anxiety. We previously demonstrated that conditional removal of the Y1 receptor in the Y5 receptor expressing neurons in juvenile Npy1rY5R?/? mice leads to higher anxiety but no changes in hypothalamus‐pituitary‐adrenocortical axis activity, under basal conditions or after acute restraint stress. In the present study, we used the same conditional system to analyze the specific contribution of limbic neurons coexpressing Y1 and Y5 receptors on the emotional and neuroendocrine responses to social chronic stress, using different housing conditions (isolation vs. group‐housing) as a model. We demonstrated that control Npy1r2lox male mice housed in groups show increased anxiety and hypothalamus‐pituitary‐adrenocortical axis activity compared with Npy1r2lox mice isolated for six weeks immediately after weaning. Conversely, Npy1rY5R?/? conditional mutants display an anxious‐like behavior but no changes in hypothalamus‐pituitary‐adrenocortical axis activity as compared with their control littermates, independently of housing conditions. These results suggest that group housing constitutes a mild social stress for our B6129S mouse strain and they confirm that the conditional inactivation of Y1 receptors specifically in Y5 receptor containing neurons increases stress‐related anxiety without affecting endocrine stress responses.  相似文献   

3.
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium‐based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol‐β‐guaiacyl ether (VG) with 1‐allyl‐3‐methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π‐π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl anion forms a hydrogen‐bonded complex with VG, the imidazolium cation interacts with VG via both the π‐π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium‐based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution.  相似文献   

4.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   

6.
The Pictet–Spengler (PS) cyclizations of β3hTrp derivatives as arylethylamine substrates were performed with L‐α‐amino and D‐α‐amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3‐disubstituted 1,2,3,4‐tetrahydro‐β‐carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β‐turn induction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
A growing body of evidence supports that pyrimidine derivatives, in which the sugar residues have been replaced by acyclic side chains, might be developed as promising anticancer agents that interfere with tumor cell proliferation, survival, and metastatic formation. In this work, we prepared novel pyrimidines bearing i‐Bu (i.e., 3, 4 , and 7 – 9 ) and isobutenyl (i.e., 5 and 10 ) side chains at C(6) and examined their in vitro effects on tumor cell lines. The dihydropyrrolo[1,2‐c]pyrimidine‐1,3‐diones 6 and 11 were obtained as products of intramolecular cyclization, which occurred during the removal of Bn in 5 or MeO protecting groups in 10 . Fluorination of 3 with diethylaminosulfur trifluoride (DAST) and then dehydrohalogenation of the resulting fluorinated derivative 4 afforded 6‐isobut‐2′‐enyl pyrimidine derivative 5 with a C(2′)C(3′) bond. For the preparation of 6‐isobut‐1′‐en‐1‐yl pyrimidine 10 , a synthetic strategy involving acetylation of the 1,3‐diols was applied. Antitumor evaluation of compounds 3 – 11 showed that 2,4‐dimethoxypyrimidine containing 6‐[(1,3‐dibenzyloxy)‐2‐hydroxy]methyl side chain, 3 , exerted a strong antiproliferative effect on the studied tumor cell lines. Additionally, it was shown that the mechanism of antiproliferative effect of 3 in HeLa cells include early G2/M arrest and apoptosis, as well as a p53‐independent S‐phase arrest upon prolonged treatment.  相似文献   

8.
The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high‐solids and thermophilic conditions in the presence of 1‐ethyl‐3‐methylimidazolium‐based ILs to enrich for IL‐tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL‐tolerant community was grown in liquid and solid‐state culture in the presence of the ILs 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) or 1‐ethyl‐3‐methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL‐pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid‐state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL‐pretreated plant biomass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:311–316, 2014  相似文献   

9.
Functional triterpenic acids such as ursolic acid (UA), oleanolic acid (OA) and betulinic acid (BA) are representative ingredients in rosemary that may have health benefits. UA, OA and BA in rosemary extracts were derivatized with 4‐(4,5‐diphenyl‐1H‐imidazole‐2‐yl)benzoyl chloride (DIB‐Cl) and detected using HPLC‐fluorescence (FL). Dried rosemary (50 mg) was ground, added to 3 ml of ethanol, sonicated for 40 min, then the sample solution was added to a mixture of 1% trimethylamine and 1 mM DIB‐Cl in acetonitrile. The mixture was settled for 5 min at room temperature, then the DIB‐triterpenic acid derivatives were separated using a Wakopak Handy ODS column (250 × 4.6 mm, 6 μm) eluted with 25 mM acetate buffer (pH 4.5)/methanol/acetonitrile (= 8:10:82 v/v/v%). The fluorescence intensity of the eluent was monitored at 365 (λex) and 490 nm (λem) and the maximum retention time of the derivatives was 30 min. Calibration curves constructed using rosemary extract spiked with standards showed good linearity (r ≥ 0.997) in the range 2.5–100 ng/ml. The detection limits at 3σ for internal BA, UA and OA peaks in rosemary extract were 0.2, 0.4 and 0.5 ng/ml, respectively. This method was used to quantify BA, UA and OA in commercially available dried rosemary products.  相似文献   

10.
The 4‐methoxybenzyloxymethyl (MBom) group was introduced at the Nπ‐position of the histidine (His) residue by using a regioselective procedure, and its utility was examined under standard conditions used for the conventional and the microwave (MW)‐assisted solid phase peptide synthesis (SPPS) with 9‐fluorenylmethyoxycarbonyl (Fmoc) chemistry. The Nπ‐MBom group fulfilling the requirements for the Fmoc strategy was found to prevent side‐chain‐induced racemization during incorporation of the His residue even in the case of MW‐assisted SPPS performed at a high temperature. In particular, the MBom group proved to be a suitable protecting group for the convergent synthesis because it remains attached to the imidazole ring during detachment of the protected His‐containing peptide segments from acid‐sensitive linkers by treatment with a weak acid such as 1% trifluoroacetic acid in dichloromethane. We also demonstrated the facile synthesis of Fmoc‐His(π‐MBom)‐OH with the aid of purification procedure by crystallization to effectively remove the undesired τ‐isomer without resorting to silica gel column chromatography. This means that the present synthetic procedure can be used for large‐scale production without any obstacles. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The interactions of cobalt(II)–4‐[(5‐chloro‐2‐pyridyl)azo]‐1,3‐diaminobenzene (5‐Cl‐PADAB) complex with different kinds of homopolymer oligonucleotides in basic medium were investigated based on the measurements of resonance light scattering, UV–vis, circular dichroism spectra and dark field light‐scattering imaging. Experiments showed that only thymidine homopolymer (poly T) oligonucleotides with the length in the range of poly T6 to poly T18 could interact with the Co(II)–5‐Cl‐PADAB complex in alkaline conditions and cause evident color and spectral change. Thus, the binary complex of Co(II)–5‐Cl‐PADAB could be employed as a visual probe for selectively recognizing the poly T oligonucleotides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Matriptase is an epithelia‐specific membrane‐anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor‐1 (HAI‐1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI‐1 complex formation determines the intensity and duration of matriptase activity. 3‐Cl‐AHPC, 4‐[3‐(1‐adamantyl)‐4‐hydroxyphenyl]‐3‐chlorocinnamic acid, is an adamantly substituted retinoid‐related molecule and a ligand of retinoic acid receptor γ (RARγ). 3‐Cl‐AHPC is of strong anti‐cancer effect but with elusive mechanisms. In our current study, we show that 3‐Cl‐AHPC time‐ and dose‐ dependently induces matriptase/HAI‐1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3‐Cl‐AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3‐Cl‐AHPC inhibits matriptase‐mediated cleavage of pro‐HGF through matriptase/HAI‐1 complex induction, resulting in the suppression of pro‐HGF‐stimulated signalling and cell scattering. Although 3‐Cl‐AHPC binds to RARγ, its induction of matriptase/HAI‐1 complex is not RARγ dependent. Together, our data demonstrates that 3‐Cl‐AHPC down‐regulates matriptase activity through induction of matriptase/HAI‐1 complex formation in a RARγ‐independent manner, providing a mechanism of 3‐Cl‐AHPC anti‐cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI‐1 complex induction using small molecules.  相似文献   

13.
Five new geminal aminocycloalkanephosphonic acids ( 4 – 8 ) containing both an aromatic ring and a cycloalkane ring were synthesized and evaluated as potential inhibitors of buckwheat phenylalanine ammonia‐lyase (PAL). Within the set of compounds which are related to 2‐aminoindane‐2‐phosphonic acid (AIP, 3 ), a known powerful inhibitor of PAL, racemic 1‐aminobenzocyclobutene‐1‐phosphonic acid ( 4 ), was six times weaker than AIP as an in vitro inhibitor of buckwheat PAL, but six times stronger than AIP as an in vivo inhibitor of phenylalanine‐derived anthocyanin synthesis in buckwheat.  相似文献   

14.
Two new α‐pyrones (=2H‐pyran‐2‐ones), ficipyrones A and B ( 1 and 2 , resp.), and two new α‐furanones (=2H‐furan‐2‐ones), ficifuranones A and B ( 3 and 4 , resp.), together with three known metabolites, antibiotic F 0368 ( 5 ), hydroxyseiridin ( 6 ), and hydroxyisoseiridin ( 7 ), were isolated from solid cultures of the plant endophytic fungus Pestalotiopsis fici. Their structures were elucidated primarily by NMR spectroscopy, and the absolute configuration of 1 was deduced from the circular‐dichroism (CD) data. Compound 1 showed antifungal activity against the plant pathogen Gibberella zeae (CGMCC 3.2873) with an IC50 value of 15.9 μM .  相似文献   

15.
The self‐incompatibility (SI) response occurs widely in flowering plants as a means of preventing self‐fertilization. In these self/non‐self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil‐secreted S‐RNases enter the pollen tube and function as cytotoxins to specifically arrest self‐pollen tube growth. Recent studies have revealed that the S‐locus F‐box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF‐interacting Skp1‐like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1‐Cullin1‐F‐box)SLF complex, indicating that this pollen‐specific SSK1‐SLF interaction occurs in both Petunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross‐pollen compatibility (CPC) in the S‐RNase‐based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S‐RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1‐like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.  相似文献   

16.
The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3‐propanediol (PD), 2,3‐butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch‐bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B‐23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PDmax concentration of ~32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake‐flask experiments, under fully aerobic conditions, with a maximum concentration of ~22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch‐bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of ~0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel‐derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions.  相似文献   

17.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

18.
Endo‐βN‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015  相似文献   

19.
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti‐arrhythmic, neuroprotective and anti‐diabetic activity. However, isorhamnetin‐3‐O‐galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti‐inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)‐mediated release of HMGB1 and HMGB1 or CLP‐mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down‐regulated HMGB1‐dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1‐mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor‐α and activation of nuclear factor‐κB by HMGB1. In addition, I3G reduced CLP‐induced HMGB1 release and sepsis‐related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway. J. Cell. Biochem. 114: 336–345, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
A series of chiral 1‐(β‐arylalkyl)‐1H‐1,2,4‐triazole derivatives has been designed as potential antifungal agents. The target triazoles have been synthesized by using a chiral auxiliary as a controlling reagent. All of the compounds were obtained with high ee values, reaching up to 99%. Preliminary bioassay results have revealed that most of the synthesized compounds display significantly higher fungicidal activities against the species Fusarium oxysporium, Rhizoctonia solani, Botrytis cinereapers, Gibberella zeae, Dothiorella gregaria, and Colletotrichum gossypii than the commercial agent triadimefon. Moreover, some of the enantiomers have been found to display significant differences in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号