首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A therapeutic rationale is proposed by selectively targeting tyrosine kinase 2 (TYK 2) to obtain potent TYK 2 inhibitors by molecular modeling studies. In the present study, we have taken tyrosine kinase (TYK 2) inhibitors and carried out molecular docking, 3?D quantitative structure–activity relationship (3D-QSAR) analysis and molecular dynamics (MD). Based on the 3D-QSAR results thirteen new compounds (R-1 to R-13) were designed and synthesized in good yields. The synthesized molecules were evaluated for their in vitro anticancer activity against LnCap and A549 cell lines. The molecules R-1, R-3, R-5, R-7, and R-10 exhibited considerable anti cancer activity.  相似文献   

2.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathiCIT000y. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q2) 0.532 and conventional (r2) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q2 0.665 and r2 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

3.
Abstract

P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.  相似文献   

4.
5.
6.
3-Hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) is generally regarded as targets for the treatment of hypercholesterolemia. HMGR inhibitors (more commonly known as statins) are discovered as plasma cholesterol lowering molecules. In this work, 120 atorvastatin analogues were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2 = 0.558 and r2 = 0.977, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2 = 0.582 and r2 = 0.919. Molecular docking and MD simulation explored the binding relationship of the ligand and the receptor protein. The calculation results indicated that the hydrophobic and electrostatic fields play key roles in QSAR model. After MD simulation, we found four vital residues (Lys735, Arg590, Asp690 and Asn686) and three hydrophobic regions in HMGR binding site. The calculation results show that atorvastatin analogues obtained by introduction of F atoms or gem-difluoro groups could obviously improve the inhibitory activity. The new HMGR inhibitor analogues design in this Letter had been submitted which is being currently synthesized by our laboratories.  相似文献   

7.
Abstract

Phosphopantetheine adenylyltransferase (PPAT) has been recognized as a promising target to develop novel antimicrobial agents, which is a hexameric enzyme that catalyzes the penultimate step in coenzyme A biosynthesis. In this work, molecular modeling study was performed with a series of PPAT inhibitors using molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR) and molecular dynamic (MD) simulations to reveal the structural determinants for their bioactivities. Molecular docking study was applied to understand the binding mode of PPAT with its inhibitors. Subsequently, 3D-QSAR model was constructed to find the features required for different substituents on the scaffolds. For the best comparative molecular field analysis (CoMFA) model, the Q2 and R2 values of which were calculated as 0.702 and 0.989, while they were calculated as 0.767 and 0.983 for the best comparative molecular similarity index analysis model. The statistical data verified the significance and accuracy of our 3D-QSAR models. Furthermore, MD simulations were carried out to evaluate the stability of the receptor–ligand contacts in physiological conditions, and the results were consistent with molecular docking studies and 3D-QSAR contour map analysis. Binding free energy was calculated with molecular mechanics generalized born surface area approach, the result of which coincided well with bioactivities and demonstrated that van der Waals accounted for the largest portion. Overall, our study provided a valuable insight for further research work on the recognition of potent PPAT inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

8.
Abstract

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation.  相似文献   

9.
10.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of substituted 1,4-dihydroindeno[1,2-c]pyrazoles inhibitors, using molecular docking and comparative molecular field analysis (CoMFA). The docking results from GOLD 3.0.1 provide a reliable conformational alignment scheme for the 3D-QSAR model. Based on the docking conformations and alignments, highly predictive CoMFA model was built with cross-validated q 2 value of 0.534 and non-cross-validated partial least-squares analysis with the optimum components of six showed a conventional r 2 value of 0.911. The predictive ability of this model was validated by the testing set with a conventional r 2 value of 0.812. Based on the docking and CoMFA, we have identified some key features of the 1,4-dihydroindeno[1,2-c]pyrazoles derivatives that are responsible for checkpoint kinase 1 inhibitory activity. The analyses may be used to design more potent 1,4-dihydroindeno[1,2-c]pyrazoles derivatives and predict their activity prior to synthesis.  相似文献   

11.
Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r2ncv and r2loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r2Pred) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.  相似文献   

12.
Filamentous temperature-sensitive protein Z (FtsZ), playing a key role in bacterial cell division, is regarded as a promising target for the design of antimicrobial agent. This study is looking for potential high-efficiency FtsZ inhibitors. Ligand-based pharmacophore and E-pharmacophore, virtual screening and molecular docking were used to detect promising FtsZ inhibitors, and molecular dynamics simulation was used to study the stability of protein-ligand complexes in this paper. Sixty-three inhibitors from published literatures with pIC50 ranging from 2.483 to 5.678 were collected to develop ligand-based pharmacophore model. 4DXD bound with 9PC was selected to develop the E-pharmacophore model. The pharmacophore models validated by test set method and decoy set were employed for virtual screening to exclude inactive compounds against ZINC database. After molecular docking, ADME analysis, IFD docking and MM-GBSA, 8 hits were identified as potent FtsZ inhibitors. A 50?ns molecular dynamics simulation was implemented on the compounds to assess the stability between potent inhibitors and FtsZ. The results indicated that the candidate compounds had a high docking score and were strongly combined with FtsZ by forming hydrogen bonding interactions with key amino acid residues, and van der Waals forces and hydrophobic interactions had significant contribution to the stability of the binding. Molecular dynamics simulation results showed that the protein-ligand compounds performed well in both the stability and flexibility of the simulation process.  相似文献   

13.
14.
15.
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R2 = .8319), cross validated coefficient (Q2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R2 = .83) and test set (R2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD–ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.  相似文献   

16.
The discovery of clinically relevant inhibitors against MurF enzyme has proven to be a challenging task. In order to get further insight into the structural features required for the MurF inhibitory activity, we performed pharmacophore and atom-based three-dimensional quantitative structure–activity relationship studies for novel thiophene-3-carbonitriles based MurF inhibitors. The five-feature pharmacophore model was generated using 48 inhibitors having IC50 values ranging from 0.18 to 663?μm. The best-fitted model showed a higher coefficient of determination (R2?=?0.978), cross-validation coefficient (Q2?=?0.8835) and Pearson coefficient (0.9406) at four component partial least-squares factor. The model was validated with external data set and enrichment study. The effectiveness of the docking protocol was validated by docking the co-crystallized ligand into the catalytic pocket of MurF enzyme. Further, binding free energy calculated by the molecular mechanics generalized Born surface area approach showed that van der Waals and non-polar solvation energy terms are the main contributors to ligand binding in the active site of MurF enzyme. A 10-ns molecular dynamic simulation was performed to confirm the stability of the 3ZM6-ligand complex. Four new molecules are also designed as potent MurF inhibitors. These results provide insights regarding the development of novel MurF inhibitors with better binding affinity.  相似文献   

17.
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.  相似文献   

18.
Abstract

The p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results.  相似文献   

19.
Abstract

Plasmodium falciparum dihydrofolate reductase enzyme (PfDHFR) is counted as one of the attractive and validated antimalarial drug targets. However, the point mutations in the active site of wild-type PfDHFR have developed resistance against the well-known antifolates. Therefore, there is a dire need for the development of inhibitors that can inhibit both wild-type and mutant-type DHFR enzyme. In the present contribution, we have constructed the common feature pharmacophore models from the available PfDHFR. A representative hypothesis was prioritized and then employed for the screening of natural product library to search for the molecules with complementary features responsible for the inhibition. The screened candidates were processed via drug-likeness filters and molecular docking studies. The docking was carried out on the wild-type PfDHFR (3QGT); double-mutant PfDHFR (3UM5 and 1J3J) and quadruple-mutant PfDHFR (1J3K) enzymes. A total of eight common hits were obtained from the docking calculations that could be the potential inhibitors for both wild and mutant type DHFR enzymes. Eventually, the stability of these candidates with the selected proteins was evaluated via molecular dynamics simulations. Except for SPECS14, all the prioritized candidates were found to be stable throughout the simulation run. Overall, the strategy employed in the present work resulted in the retrieval of seven candidates that may show inhibitory activity against PfDHFR and could be further exploited as a scaffold to develop novel antimalarials.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
TYK2 is a nonreceptor tyrosine kinase, member of the Janus kinases (JAK), with a central role in several diseases, including cancer. The JAKs' catalytic domains (KD) are highly conserved, yet the isolated TYK2-KD exhibits unique specificities. In a previous work, using molecular dynamics (MD) simulations of a catalytically impaired TYK2-KD variant (P1104A) we found that this amino acid change of its JAK-characteristic insert (αFG), acts at the dynamics level. Given that structural dynamics is key to the allosteric activation of protein kinases, in this study we applied a long-scale MD simulation and investigated an active TYK2-KD form in the presence of adenosine 5′-triphosphate and one magnesium ion that represents a dynamic and crucial step of the catalytic cycle, in other protein kinases. Community analysis of the MD trajectory shed light, for the first time, on the dynamic profile and dynamics-driven allosteric communications within the TYK2-KD during activation and revealed that αFG and amino acids P1104, P1105, and I1112 in particular, hold a pivotal role and act synergistically with a dynamically coupled communication network of amino acids serving intra-KD signaling for allosteric regulation of TYK2 activity. Corroborating our findings, most of the identified amino acids are associated with cancer-related missense/splice-site mutations of the Tyk2 gene. We propose that the conformational dynamics at this step of the catalytic cycle, coordinated by αFG, underlie TYK2-unique substrate recognition and account for its distinct specificity. In total, this work adds to knowledge towards an in-depth understanding of TYK2 activation and may be valuable towards a rational design of allosteric TYK2-specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号