首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Hybrid plants were obtained between Triticum aestivum (2n=6x=42, AABBDD) and Leymus innovatus (2n=4x=28, JJNN) at a frequency varying from 0.4% to 1.2% of the pollinated florets. Improvement of the embryo culture medium resulted in a higher frequency of embryo rescue. Eight of ten hybrids had the expected chromosome number of 35 (ABDJN). Meiotic analysis indicated that there was no homology between the genomes of the two species. Two hybrids had only 28 chromosomes. Comparison of chromosome pairing between the two types of hybrids suggested that Leymus innovatus carries genes that affect chromosome pairing and behavior. The relatively high occurrence of spontaneous doubling in the meiocytes of these hybrids may indicate that backcrossing of the hybrids to wheat should be possible, although frequent chromosome irregularities observed in the meiocytes of the hybrids may decrease the probability of success of this step, which is essential to the process of gene transfer from L. innovatus to wheat.Contrib. no. 366  相似文献   

2.
Summary Two hybrid embryos of intergeneric origin between Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) and Psathyrostachys juncea (2n=2x=14, NN) were successfully rescued. One hybrid plant had the expected chromosome number of 28 (ABDN), whereas the second plant had 35 chromosomes. The average meiotic chromosome pairing in the 35-chromosome hybrid was 21.87 univalents + 6.38 bivalents + 0.11 trivalents + 0.009 quadrivalents, which indicates that two copies of the N genome were present. Chromosome pairing in the 28-chromosome hybrid was low (1.35 bivalents), and pointed out the lack of homology between the wheat genomes and the P. juncea genome. These new hybrids showed some necrosis and chlorosis, which caused severe floral abortion in the plant that had 35 chromosomes. These problems became gradually less severe after 18 months.Contrib. no. 372  相似文献   

3.
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated.  相似文献   

4.
 Chromosome painting enabled the study of homologous chromosome behaviour prior to and during meiosis. Total genomic DNA from rye, used as a probe for in situ hybridization, identified the rye chromosome arm in a wheat-rye translocation line (T5AS·5RL) at meiotic prophase and the preceding interphase. Accurate staging of the development of the meiocytes was attained by parallel studies of chromatin morphology, nucleolar behaviour and synaptonemal complex formation in electron microscopy thin sections and silver-stained surface spreads. Three stages of pairing were identified for the large cereal genomes that are organized in a Rabl configuration: first, cognition occurs during the long interphase before leptotene, bringing the homologous chromosome domains into close proximity and possibly starting at the centromere; second, homologous chromosome segments align at late leptotene; and third, zygotene synapsis initiates near the telomere, although it was also observed to occur near the centromere. A pairing model is proposed for wheat, with a genome size of 17000 Mbp, that shows prallels to and notable differences from yeast and mammalian models of meiosis. Received: 25 January 1997 / Revision accepted: 14 July 1997  相似文献   

5.
普通小麦和新麦草属间杂种的产生及细胞遗传学研究   总被引:17,自引:0,他引:17  
孙根楼  颜济 《遗传学报》1992,19(4):322-326
进行了普通小麦和华山新麦草属间杂交,运用杂种幼胚培养技术,首次成功地获得了它们的属间杂种。F_1形态趋于中间型,均完全不育。F_1花粉母细胞预期类型(2n=28)的减数分裂中期Ⅰ平均染色体配对构型为26.72Ⅰ+0.62Ⅱ+0.01Ⅲ,后期Ⅰ和后期Ⅱ有落后染色体,多分体具大量微核。结果表明普通小麦和华山新麦草的染色体组间不存在同源或部分同源性。还观察到花粉母细胞异常减数分裂现象。用普通小麦回交,未获得回交后代。  相似文献   

6.
 Chromosome pairing at metaphase-I was analyzed in F1 hybrids among T. turgidum (AABB), T. aestivum (AABBDD), and T. timopheevii (AtAtGG) to study the chromosome structure of T. timopheevii relative to durum (T. turgidum) and bread (T. aestivum) wheats. Individual chromosomes and their arms were identified by means of C-banding. Homologous pairing between the A-genome chromosomes was similar in the three hybrid types AAtBG, AAtBGD, and AABBD. However, associations of B-G were less frequent than B-B. Homoeologous associations were also observed, especially in the AAtBGD hybrids. T. timopheevii chromosomes 1At, 2At, 5At, 7At, 2G, 3G, 5G, and 6G do not differ structurally from their counterpart in the A and B genomes. Thus, these three polyploid species inherited translocation 5AL/4AL from the diploid A-genome donor. Chromosome rearrangements that occurred at the tetraploid level were different in T. turgidum and T. timopheevii. Translocation 4AL/7BS and a pericentric inversion of chromosome 4A originated only in the T. turgidum lineage. The two lines of T. timophevii studied carry four different translocations, 6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL, which most likely arose in that sequence. These structural differences support a diphyletic origin of polyploid wheats. Received: 15 June 1998 / Accepted: 19 August 1998  相似文献   

7.
 Homoeologous pairing at metaphase I was analyzed in standard-type, ph2b, and ph1b hybrids of Triticum aestivum (common, bread or hexaploid wheat) and T. sharonense in order to establish the homoeologus relationships of T. sharonense chromosomes to hexaploid wheat. Chromosomes of both species, and their arms, were identified by C-banding. Normal homoeologous relationships for the seven chromosomes of the Ssh genome, and their arms, were revealed, which implies that no apparent chromosome rearrangement occurred in the evolution of T. sharonense relative to wheat. All three types of hybrids with low-, intermediate-, and high-pairing level showed preferential pairing between A-D and B-Ssh. A close relationship of the Ssh genome to the B genome of bread wheat was confirmed, but the results provide no evidence that the B genome was derived from T. sharonense. Data on the pairing between individual chromosomes of T. aestivum and T. sharonense provide an estimate of interspecific homoeologous recombination. Received: 14 October 1996 / Accepted: 25 October 1996  相似文献   

8.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

9.
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.  相似文献   

10.
The chromosomal behaviour at meiosis in pollen mother cells of 33 sample materials from 4 species in Agropyron Gaerm. distributed over various regions in China were observed. We. found that B chromosomes were mainly-present in A. mongolicum Keng (2n=2x=14) and were absent in the tetraploid ,A. cristarum (L.) Gaertn. (2n=4x=28) and ,A. michnoi Roshev. (2n=4x=28). Of all A. desertorum (Fisch.) Schult. (2n=4x=28) populations, they were present in 40%. The pairing between even numbers of B chromosomes usually occured at diakinesis where as uneven numbers of B chromosomes at metaphase 1. B chromosomes at anaphase I separated at random. The Fagging Bs tended to reach two poles by chromatids through precocious division of Bs. The pairing and chiasma frequencies between A chromosomes were increased by the larger numbers of Bs. The relationship between B chromosomes and species ploidy, the homeology among Bs, etc were discussed.  相似文献   

11.
通过胚培养产生了节节麦和硬粒小麦-簇毛麦双二倍体间的杂种。结果表明节节麦和硬粒小麦-簇毛麦双二倍体杂交以节节麦作母本较易结实,3个组合的结实率分别为59.18%、67.72%和60.22%,胚培成苗率分别为39.13%、38.10%和50%。杂种F_1生活力旺盛,形态像父本硬粒小麦-簇毛麦双二倍体。杂种自交可孕,3个组合自交结实率平均为7.63%。杂种F_1(ABVD)的减数分裂平均构型为25.36个单价体,1.21个二价体和0.06个三价体,平均每个细胞交叉结频率为1.38,高于“中国春”单倍体的配对频率,推测V组和A、B、D组染色体间有部分同源关系。节节麦和硬粒小麦-簇毛麦双二倍体杂交可能是产生八倍体(AABBDDVV)的又一途径。  相似文献   

12.
Meiosis occupies only a very short period of the life cycle of higher plants but it is a crucial process ensuring the correct passage and maintenance of genetic information from parent to offspring. A clone (designated pAWJL3) has been isolated from a cDNA library generated from RNA prepared from young wheat florets at early meiosis. The clone was identified through cross-hybridisation to a cDNA clone from maize that, in turn, had been isolated by hybridisation to a Lilium meiosis-specific cDNA clone. The genes encoding the sequence represented in the wheat cDNA clone have been assigned to chromosomes in wheat. The clone, pAWJL3, represents a small family of genes with about 20 members located on the short arms of group 3 and 5 chromosomes. The chromosomal regions harbour genes known to control chromosomal pairing in wheat. DNA prepared from a deletion mutation affecting one of the major genes controlling pairing, Ph2 located on the short arm of 3DS, lacks the 3DS-specific members of the pAWJL3 family bands. The genes are shown to be expressed only after leptotene and predominantly at zygotene and pachytene of meiosis I. The deduced amino acid sequence encoded by the cDNA clone shows two domains, one with three leucine-rich, 24-amino acid repeats and the other with four leucine heptad repeats that resemble those found in basic leucine zipper proteins.  相似文献   

13.
 Homoeologous pairing at metaphase I was analysed in the standard-type, ph2b and ph1b hybrids of Triticum aestivum (AABBDD) and Aegilops speltoides (SS). Data from relative pairing affinities were used to predict homoeologous relationships of Ae. speltoides chromosomes to wheat. Chromosomes of both species, and their arms, were identified by C-banding. The Ae. speltoides genotype carried genes that induced a high level of homoeologous pairing in the three types of hybrids analyzed. All arms of the seven chromosomes of the S genome showed normal homoeologous pairing, which implies that no apparent chromosome rearrangements occurred in the evolution of Ae. speltoides relative to wheat. A pattern of preferential pairing of two types, A-D and B-S, confirmed that the S genome is very closely related to the B genome of wheat. Although this pairing pattern was also reported in hybrids of wheat with Ae. longissima and Ae. sharonensis, a different behaviour was found in group 5 chromosomes. In the hybrids of Ae. speltoides, chromosome 5B-5S pairing was much more frequent than 5D-5S, while these chromosome associations reached similar frequencies in the hybrids of Ae. longissima and Ae. sharonensis. These results are in agreement with the hypothesis that the B genome of wheat is derived from Ae. speltoides. Received: 8 January 1998 / Accepted: 4 February 1998  相似文献   

14.
phlb基因诱导小麦ABD染色体组部分同源染色体配对的研究   总被引:1,自引:0,他引:1  
通过花药培养首次获得了“中国春”phlb突变体单倍体,同时也获得了“中国春”单倍体。对其细胞学观察表明,前者花粉母细胞减数分裂中期Ⅰ每个细胞染色体交叉为5.08个,后者为1.30个。证明了phlb基因在单倍体状态下具有强的诱导ABD染色体组部分同源染色体间的配对作用。  相似文献   

15.
The oocytes of B6.Y(TIR) sex-reversed female mice can be fertilized but the resultant embryos die at early cleavage stages. In the present study, we examined chromosome segregation at meiotic divisions in the oocytes of XY female mice, compared to those of XX littermates. The timing and frequency of oocyte maturation in culture were comparable between the oocytes from both types of females. At the first meiotic division, the X- and Y-chromosomes segregated independently and were retained in oocytes at equal frequencies. However, more oocytes retained the correct number of chromosomes than anticipated from random segregation. The oocytes that had reached MII-stage were activated by fertilization or incubation with SrCl(2). As expected, the majority of oocytes from XX females completed the second meiotic division and reached the 2-cell stage in 24 h. By contrast, more than half of oocytes from XY females initially remained at the MII-stage while the rest precociously entered interphase after SrCl(2) activation; very few oocytes were seen at the second anaphase or telophase and they often showed impairment of sister-chromatid separation. Eventually the majority of oocytes entered interphase and formed pronuclei, but very few reached the 2-cell stage. Similar results were obtained after fertilization. We conclude that the XY chromosomal composition in oocyte leads to impairment in the progression of the second meiotic division.  相似文献   

16.
 We are reporting the successful isolation of wheat chromosome arm 1DS by flow cytometry. A chromosome suspension was prepared for the 1DS ditelosomic line and the normal ‘Chinese Spring’ (CS) by chopping 2-day-old root tip meristems, synchronized by hydroxyurea, in HEPES-magnesium sulfate buffer containing propidium iodide. Chromosomes were analyzed and sorted with a FACS Vantage flow cytometer and cell sorter. An extra peak was observed in the flow karyotype of the ditelosomic line that was absent in ‘CS’. The estimated size of chromosomes from the extra peak matched with the expected size of chromosome 1DS. Chromosomes from the putative 1DS peak were analyzed by both fluorescent microscopy and N-banding analysis. A total of 571 chromosomes from two separate experiments were analyzed, and all were observed to be telosomics except for 2 which were broken. About 82% of these telosomics showed the diagnostic N-band of 1DS, the remaining were unbanded and are probably also 1DS. This strategy can also be used to sort other wheat arms. Received: 30 September 1998 / Accepted: 2 November 1998  相似文献   

17.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

18.
Boule(boll)基因是DAZ基因家族的一个新成员,含有一个RNA结合域和一个DAZ重复域,是人类精子发生减数分裂过程中主要调控因子。为了研究Boule基因结构及其功能,利用生物信,息学方法对Boule蛋白相关结构、相互作用蛋白及其功能进行分析和预测。结果表明,Boule蛋白存在明显的亲水区、疏水区和卷曲螺旋;不存在信号肽、跨膜结构;主要分布在细胞质、细胞核、线粒体中;二级结构以α-螺旋、延伸链、无规则卷曲所组成,并含有非正规二级结构区;作用蛋白主要为CDC25A蛋白.功能域主要包含RRM保守域。Boule蛋白在精子发生过程中第一次减数分裂的生殖细胞中特异性表达,而在减数分裂完全阻滞的睾丸组织中不表达。因此,Boule蛋白功能可能与雄性生殖细胞减数分裂相关基因表达有关。  相似文献   

19.
利用PE构建免疫毒素   总被引:2,自引:0,他引:2  
利用PE构建免疫毒素蒋欣黄华梁(中国科学院遗传研究所,北京100101)PEandPE-derivedRecombinantImmunotoxinsJiangXinHuangHualiang(InstituteofGenetics,ChineseAc...  相似文献   

20.
用中国春双端二体分析西藏小麦的染色体构成   总被引:5,自引:0,他引:5  
陈佩度  黄璃 《遗传学报》1991,18(1):39-43
用普通小麦“中国春”双端二体系列(double ditelosomics)作母本分别与西藏小麦杂交,对全套21个F_1的PMC在MI进行端体配对分析。在(“中国春”双端二体7B×西藏小麦)F_1中,含有(t′,t1″)构型的PMC占观察总数的87.3%,7BS常不参与配对,显示出有较大差异。“中国春”3A、7A、2D—7D等8条染色体的两臂可以分别同时与西藏小麦对应染色体配成异型三价体(tt1′′′)的PMC频率达80.0—95.5%,表明西藏小麦与“中国春”之间这8条染色体差异很小。在涉及其余12条染色体的组合中,出现(tt1′′′)、(t′t1″)和(t′,t′)构型的PMC分别占观察细胞总数的42.3—77.6%、21.9—55.5%和0—8.0%,表明它们之间仅某个染色体臂间有轻度变异或分化。从总体来看,西藏小麦与“中国春”之间除7BS有较大差异外在染色体构成上基本相似。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号