首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have revealed that organophosphate pesticides (OPs) are primarily metabolized by xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticides-exposed workers. Present study was designed to determine the influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to OPs. We examined 268 subjects including 134 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using alkaline comet assay and genotyping was done using individual polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Acetylcholinesterase and paraoxonase activity were found to be significantly lowered in workers as compared to control subjects which were analyzed as biomarkers of toxicity due to OPs exposure (p<0.001). Workers showed significantly higher DNA tail moment (TM) compared to control subjects (14.32±2.17 vs. 6.24±1.37 tail % DNA, p<0.001). GSTM1 null genotype was found to influence DNA TM in workers (p<0.05). DNA TM was also found to be increased with concomitant presence of NAT2 slow acetylation and CYP2C9*3/*3 or GSTM1 null genotypes (p<0.05). DNA TM was found increased in NAT2 slow acetylators with mild and heavy smoking habits in control subjects and workers, respectively (p<0.05). The results of this study suggest that GSTM1 null genotypes, and an association of NAT2 slow acetylation genotypes with CYP2C9*3/*3 or GSTM1 null genotypes may modulate DNA damage in workers occupationally exposed to OPs.  相似文献   

2.
Increasing investigations have been conducted on the association between DNA adducts and glutathione S-transferase Mu 1 (GSTM1) null genotype in occupationally exposed population. However, the results were controversial. The objective of the present study was to perform a meta-analysis to better understand the possible association between DNA adduct levels and GSTM1 genotype in occupational exposure population. Among a total of 167 literature searched from frequently-used databases, 7 articles corresponding to the specific criteria were enrolled into the meta-analysis. There was a significant increase of DNA adduct levels in occupationally exposed workers compared with control groups (p = 0.003). Additionally, DNA adduct levels among the carriers of null GSTM1 were significantly higher than those of active GSTM1 carriers in exposure workers (p = 0.017). Egger's test (p = 0.056) and Begg's test (p = 0.368) indicated that there was no evidence of publication bias. In conclusion, workers exposed to polycyclic aromatic hydrocarbons (PAHs) were at high risk to form DNA adducts, and the occupationally exposed workers who carried null GSTM1 were more susceptible to damage from PAHs.  相似文献   

3.
We investigated whether the presence of (+)-anti-benzo(a)pyrene diolepoxide adducts to serum albumin (BPDE-SA) among workers exposed to benzo(a)pyrene (BaP) and unexposed reference controls was influenced by genetic polymorphisms of cytochrome P4501A1 (CYP1A1), microsomal epoxide hydrolase (EHPX), glutathione S-transferases M1 (GSTM1) and P1 (GSTP1), all involved in BaP metabolism. Exposed workers had significantly higher levels of adducts (0.124 ± 0.02 fmol BPTmg?1 SA, mean ± SE) and a higher proportion of detectable adducts (40.3%) than controls (0.051 ± 0.01 fmol BPT mg?1 SA; 16.1%) (p = 0:014 and p = 0:012). Smoking increased adduct levels only in occupationally exposed workers with the GSTM1 deletion (GSTM1 null) (p = 0:034). Smokers from the exposed group had higher adduct levels when they were CYP1A1 *1/*1 wild-type rather than heterozygous and homozygous for the variant alleles (CYP1A1 *1/*2 plus *2/*2) (p = 0:01). The dependence of BPDE-SA adduct levels and frequency on the CYP1A1 *1/*1 genotype was most pronounced in GSTM1-deficient smokers. Exposed workers with GSTM1 null/GSTP1 variant alleles had fewer detectable adducts than those with the GSTM1 null/GSTP1*A wild-type allele, supporting for the first time the recent in vitro finding that GSTP1 variants may be more effective in the detoxification of BPDE than the wild-type allele. Logistic regression analysis indicated that occupational exposure, wild-type CYP1A1*1/*1 allele and the combination of GSTM1 null genotype+EHPX genotypes associated with predicted low enzyme activity were significant predictors of BPDE-SA adducts. Though our findings should be viewed with caution because of the relatively limited size of the population analysed, the interaction between these polymorphic enzymes and BPDE-SA adducts seems to be specific for high exposure and might have an impact on the quantitative risk estimates for exposure to polycyclic aromatic hydrocarbons.  相似文献   

4.
Endogenous DNA damage levels were analyzed in relation to polymorphisms in genes encoding phase I detoxifying enzyme—CYP1A1, phase II detoxifying enzymes—GSTM1, GSTT1, GSTP1 and enzyme involved in nucleotide excision repair-XPD. The study group consisted of 220 healthy non-smoking volunteers; 90 men and 130 woman, 25–60 years old (44 ± 10 years). The level of DNA damage (% DNA in tail) was evaluated by alkaline comet assay. The genetic variants were determined by restriction fragment length polymorphism PCR. The highest level of DNA damage (6.7%) was found in carriers of both: AA variant of XPD gene and M1 null variant of GSTM1 gene. The lowest level of DNA breaks (3.7%) was associated with the genotype GSTP1-AA/GSTM1 (+).  相似文献   

5.
Glutathione S-transferases are a superfamily of multifunctional enzymes that play a key role in Phase II metabolism, detoxifying therapeutic drugs, and various carcinogens by conjugation with glutathione. We undertook a case-control study in Central-Eastern Portuguese population to evaluate the association of null genotype in GSTM1 and GSTT1 along with the polymorphism in GSTP1 (A/G) and susceptibility to breast cancer. The population sample consisted of 85 patients with histological diagnosis of breast cancer and 102 healthy women. Genomic DNA was extracted from blood samples, and genotyping analyses were performed by PCR-based methods. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated by unconditional logistic regression. We found a increased breast cancer risk associated with GSTM1 null genotype (OR = 3.597; 95% CI = 1.849-6.999; P = 0.0001) and GSTT1 (OR = 2.592; 95% CI = 1.432-4.690; P = 0.002), but the presence of valine alleles compared to isoleucine alleles in codon 105 in GSTP1 did not increase the risk of breast cancer development. The two-way combination of GSTM1 and GTTT1 null genotypes resulted in 8-fold increase for breast cancer risk (OR = 8.287; 95% CI = 3.124-21.980; P = 0.0001) and the three-way combination of GSTP1 105AA/AG and null genotypes for both GSTM1 and GSTT1 resulted in 5-fold increase for breast cancer risk (OR = 5.040; 95% CI = 1.392-18.248; P = 0.016). Our results suggest that GSTM1 and GSTT1 null genotype alone, both combined or combined with GSTP1 valine alleles, are associated with higher susceptibility to breast cancer development.  相似文献   

6.
Phase I and Phase II xenobiotic-metabolising enzyme families are involved in the metabolic activation and detoxification of various classes of environmental carcinogens. Particular genetic polymorphisms of these enzymes have been shown to influence individual cancer risk. A brief overview is presented about recent research of the relationship between metabolic genotypes and internal dose, biologically effective dose and cytogenetic effects of complex and specific genotoxic exposures of human study populations, and we report our new results from two molecular epidemiological studies. We investigated the effects of multiple interactions among CYP1A1 Ile462Val, CYP1A1 MspI, CYP1B1 Leu432Val, CYP2C9 Arg144Cys, CYP2C9 Ile359Leu, NQO1 Pro189Ser, GSTM1 gene deletion and GSTP1 Ile105Val genotypes on the levels of carcinogen-DNA adducts determined by (32)P-postlabelling and PAH-DNA immunoassay in peripheral blood lymphocytes from workers occupationally exposed to polycyclic aromatic hydrocarbons in aluminium plants, and in bronchial tissue from smoking lung patients. A statistically significant positive linear correlation was observed between white blood cell aromatic DNA adduct and urinary 1-hydroxypyrene (1-OHPY) levels from potroom workers with GSTM1 null genotype (P=0.011). Our results suggest interactions between GSTM1 and GSTP1 alleles in modulation of urinary 1-OHPY levels and white blood cell DNA adduct levels in the PAH-exposed workers. Interactions between GSTM1 and GSTP1 alleles, in association with particular genotype combinations of CYPs, were also recognised in bronchial aromatic DNA adduct levels of smoking lung patients. The impact of single metabolic genotypes and their combinations on biomarkers of exposure was usually weak, if any, in both our studies and reports of the literature. The effect of special metabolic gene interactions may be better recognised if the compared groups of individuals are stratified for multiple potential modulators of the observable biomarker end-point, and/or if chemical structure-specific biomarker methods are applied.  相似文献   

7.
Glutathione S-transferases (GSTs) belong to a group of multigene and multifunctional detoxification enzymes, which defend cells against a wide variety of toxic insults and oxidative stress. Oxidative stress leads to cellular dysfunction which contributes to the pathophysiology of diseases such as cancer, atherosclerosis, and diabetes mellitus. It is important to assess whether the glutathione S-Transferase (GSTT1, GSTM1 and GSTP1) genotypes are associated with type 2 diabetes mellitus as deletion polymorphisms have an impaired capability to counteract the oxidative stress which is a feature of diabetes. GSTT1, GSTM1 and GSTP1 gene polymorphisms were analysed in 321 patients and 309 healthy controls from an endogamous population from north India. An association analysis was carried out at two levels (a) individual genes and (b) their double and triple combinations. The proportion of GSTT1 and GSTM1 null genotypes was higher in diabetics compared to controls (GSTT1 30.8 vs. 21.0 %; GSTM1 49.5 vs. 27.2 %). The frequency of the null genotype at both loci was higher in diabetics (19.6 vs. 7.8 %) leading to an odds ratio of 2.90 (CI 1.76–4.78, P < 0.0001). At GSTP1locus, patients had a higher frequency of the V/V genotype (15.6 vs. 7.5 %) and significant susceptible odds ratio (2.56, CI 1.47–4.48, P < 0.001). A combination of null genotypes at GSTT1 and GSTM1 loci and V/V genotype of GSTP1 locus showed highest odds ratio (9.64, CI 1.53–60.63, P < 0.01). Overall this study highlights that GST genes may play an important role in the pathogenesis of type 2 diabetes. The risk is higher in individuals carrying more than one susceptible genotype at these loci. The potential role of GST polymorphisms as markers of susceptibility to type 2 diabetes needs further investigations in a larger number of patients and populations.  相似文献   

8.
DNA and chromosome damages in peripheral blood lymphocytes were evaluated in 151 workers occupationally exposed to formaldehyde (FA) and 112 non-FA exposed controls. The effects of polymorphisms in three glutathione-S-transferase (GSTs) genes on the DNA and chromosome damages were assessed as well. Alkaline comet assay and cytokinesis-block micronucleus (CBMN) assay were used to determine DNA and chromosome damages, respectively. The genotypes of GSTP1 (Ile105Val), GSTT1, and GSTM1 were assayed. The mean 8-h time-weighted average (TWA) concentrations of FA in two plywood factories were 0.83 ppm (range: 0.08–6.30 ppm). FA-exposed workers had higher olive tail moment (TM) and CBMN frequency compared with controls (Olive TM, 3.54, 95%CI = 3.19–3.93 vs. 0.93, 95%CI = 0.78–1.10, P < 0.01; CBMN frequency, 5.51 ± 3.37 vs. 2.67 ± 1.32, P < 0.01). Olive TM and the CBMN frequency also had a dose-dependent relation with the personal FA exposure. Significant association between FA exposure history and olive TM and CBMN frequency were also identified. The level of olive TM was slightly higher in FA-exposed workers with GSTM1 null genotype than those with non-null genotype (3.86, 95%CI = 3.31–4.50 vs. 3.27, 95%CI = 2.83–3.78, P = 0.07) with adjustment of covariates. We also found that FA-exposed workers carrying GSTP1 Val allele had a slightly higher CBMN frequency compared with workers carrying only the wild-type allele (6.32 ± 3.78 vs. 5.01 ± 2.98, P = 0.05). Our results suggest that the FA exposure in this occupational population increased DNA and chromosome damages and polymorphisms in GSTs genes may modulate the genotoxic effects of FA exposure.  相似文献   

9.
Aromatic DNA adduct levels and polymorphisms of two phase I enzymes - CYP1A1 and CYP2D6 and two phase II enzymes - GSTM1 and GSTP1 were analyzed in a group of 133 nonsmoking healthy women 35-45 years old and holding jobs not connected with the exposure to the combustion products of organic matter. They were office workers from the south and north-eastern parts of Poland. Blood samples were collected in winter and in summer. Aromatic DNA adduct levels were measured in all winter and summer samples. The frequencies of CYP1A1, CYP2D6, GSTM1 and GSTP1 polymorphisms in samples from the studied women did not show any differences when compared with other Caucasian populations and the Polish male population studied previously. The differences in the levels of DNA adducts among the carriers of different genotypes were statistically non-significant. Analysis of combined genotypes selected the groups of volunteers with the highest and the lowest DNA adduct levels. The highest levels of DNA adducts were observed in the carriers of GSTM1(null)/CYP1A1Ile/Val (8.00+/-13.00 adducts/10(8) nucleotides in summer samples) and GSTP1-AA/CYP1A1Ile/Val genotypes (7.00+/-4.32 in winter and 7.30+/-7. 27/10(8) nucleotides in summer). The lowest levels of DNA adducts (3. 00+/-2.30 in winter and 2.00+/-3.16/10(8) nucleotides in summer) were found in the carriers of the genotype GSTP1-AG+GG/CYP1A1Ile/Val. The levels of DNA adducts in these groups were determined by the polymorphisms of GSTM1 and GSTP1 phase II detoxifying enzymes.  相似文献   

10.
The aim of this study was to determine whether the Glutathione S-transferase M1 (GSTM1) and P1 (GSTP1) polymorphisms confer susceptibility to rheumatoid arthritis (RA). Meta-analysis was performed on the associations between the GSTM1 and GSTP1 null genotypes and RA, and on the association between smoking or seropositive status and the GSTM1 null genotype in RA patients. Twelve studies involving 3,990 RA patients and 2,815 controls were included in the meta-analysis. All 12 studies examined the GSTM1 polymorphism and three the GSTP1 polymorphism. Meta-analysis of GSTM1 null polymorphism in 2,291 RA and 2,713 control subjects revealed no association between RA and the GSTM1 null genotype (OR?=?1.139, 95?% CI?=?0.914–1.419, p?=?0.246). Stratification by ethnicity indicated no association between the GSTM1 null genotype and RA in Asians or Europeans (OR?=?1.245, 95?% CI?=?0.729–2.124, p?=?0.422; OR?=?1.023, 95?% CI?=?0.794–1.318, p?=?0.863). Furthermore, there was no association between smoking and the GSTM1 null genotype (OR?=?0.943, 95?% CI?=?0.734–1.210, p?=?0.642). In addition, no association was found between seropositive status including anti-CCP (anti-citrullinated antibody) and/or RF (rheumatoid factor) and the GSTM1 null genotype. Meta-analysis of 915 RA and 1,082 controls revealed no association between RA and the GSTP1 null genotype (OR?=?0.965, 95?% CI?=?0.802–1.161, p?=?0.704). Furthermore, stratification by ethnicity indicated no association between the GSTP1 null genotype and RA in Europeans (OR?=?0.794, 95?% CI?=?0.594–1.061, p?=?0.119). This meta-analysis suggests that the GSTM1 and GSTP1 polymorphisms are not associated with the risk of RA. However, due to the small number of studies included and our inability to perform subgroup analysis by environmental factors, further studies are required to explore the roles played by GSTM1 and GSTP1 polymorphisms in the pathogenesis of RA.  相似文献   

11.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

12.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P?0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P?0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P?0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

13.
Glutathione S-transferases (GSTs) belong to a superfamily of detoxification enzymes that provide critical defences against a large variety of chemical carcinogens and environmental toxicants. GSTs are present in most epithelial tissues of the human gastrointestinal tract. We investigated associations between genetic variability in specific GST genes (GSTM1, GSTT1 and GSTP1), the interaction with cigarette smoking and susceptibility to gastric cancer. The GSTM1, GSTT1 and GSTP1 polymorphisms were determined using real-time polymerase chain reaction (PCR) and fluorescence resonance energy transfer with Light Cycler Instrument. The study included 70 patients with gastric cancer and 204 controls. Associations between specific genotypes and the development of gastric cancer were examined by use of logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 homozygous null genotype was associated with an increased risk of developing gastric cancer (OR = 1.73; 95% CI = 1.10-3.04). GSTT1 homozygous null genotype and GSTP1 genotypes were not associated with the risk of gastric cancer. Also there was no difference between cases and controls in the frequency of val-105 and ile-105 alleles (p = 0.07). After grouping according to smoking status, GSTM1 null genotype was associated with an increased gastric cancer risk for smokers (OR = 2.15; 95% CI, 1.02-4.52). There were no significant differences in the distributions of any of the other GST gene combinations. Our findings suggest that the GSTM1 null genotype may be associated with an increased susceptibility to gastric cancer.  相似文献   

14.
Exposure to benzene has been associated with haematological diseases such as neutropenia (NEB) and acute myeloid leukaemia (AML). We tested whether the null genotypes of the GSTM1 and GSTT1 genes, involved in benzene inactivation, altered the risk for NEB in southeastern Brazil. Genomic DNA from 55 NEB patients and 330 controls was analysed by multiplex-polymerase chain reaction. The frequency of the GSTM1, GSTT1 and combined null genotypes was similar in patients and controls (GSTM1, 27.3% vs. 38.8%, p = 0.16; GSTT1, 25.5% vs. 19.7%, p = 0.24; GSTM1/GSTT1, 12.7% vs. 6.7%, p = 0.26; respectively). The distribution of genotype classes in NEB patients was similar to normal controls, suggesting that GSTM1 and GSTT1 null genotypes make no specific contribution to the risk of NEB. As the GSTM1 and GSTT1 null genotypes were previously associated with increased risk for AML in Brazil and elsewhere, we hypothesise that different thresholds of chemical exposure relative to distinct GSTM1 and GSTT1 genotypes may determine whether AML or NEB manifests in benzene exposed individuals from southeastern Brazil. Although indicative, our results still require support by prospective and large scale epidemiological studies, with rigorous assessment of daily chemical exposures and control of the possible contribution of other polymorphic genes involved in benzene metabolism.  相似文献   

15.
Cytogenetic study of workers exposed to chromium compounds   总被引:7,自引:0,他引:7  
Wu FY  Tsai FJ  Kuo HW  Tsai CH  Wu WY  Wang RY  Lai JS 《Mutation research》2000,464(2):289-296
The frequency of sister chromatid exchanges (SCEs), high SCE frequency cells (HFCs), and genetic polymorphism of genotypes glutathione S-transferase (GST) M1 and T1 were analyzed in peripheral lymphocytes of 35 workers occupationally exposed to chromium (Cr) and 35 matched control group. Results showed that workers exposed to Cr showed 6.07 SCE/cell, as compared to 4.76 SCE/cell for the control group (p<0.01). Smokers showed a statistically significant higher frequency of SCE than non-smokers in both groups. The work duration of Cr workers was an important factor. Workers exposed for more than 5 years showed a significantly higher level of SCEs (p<0.05). Workers exposed to Cr for 5 or more years had higher HFC rates (51.4%) than those exposed for less than 5 years (22.9%), with an odds ratio of 4.5 times than those exposed for less than 5 years. In HFC analysis, Cr workers who smoked showed a higher level of HFC (60%) than the control group (5.7%) and also had a higher odds ratio (60.4) compared with the control group. Among non-smokers, the odds ratio was 9.0. Another objective of this study is to investigate the relationship between SCE and genetic polymorphisms of GST M1 and T1 in Cr workers. The results showed that the incidence of GSTM1 null genotype was 60% in the control group and 77.1% in Cr workers, and percentages of GSTT1 deletion were 42.9% and 62.9% in control and exposed individuals, respectively. There was a slightly increased frequency of SCE among Cr workers with GSTM1 null genotype as opposed to non-null genotype individuals. A similar result was seen among the control group; however, there were no statistically significant differences. In conclusion, the current study found the positive induction of SCE in workers who smoked or/and were exposed to Cr. However, different GST genotypes did not influence the level of cytogenetic damage between groups. Despite slight variation in numbers, they all appear to be not different.  相似文献   

16.
The aim of the present study was to investigate the role of some polymorphisms in GSTs (GSTM1, GSTT1 and GSTP1) which are very important protective mechanisms against oxidative stress and in OGG1 gene which is important in DNA repair, against the risk of type 2 diabetes mellitus (T2DM). 127 T2DM and 127 control subjects were included in the study. DNA was extracted from whole blood. Analyses of GSTM1 and GSTT1 gene polymorphisms were performed by allele specific PCR and those of GSTP1 Ile105Val and OGG1 Ser326Cys by PCR-RFLP. Our data showed that GSTM1 null genotype frequency had a 2-6 times statistically significant increase in a patient group (OR=3.841, 95% CI=2.280-6.469, p<0.001) but no significance with GSTT1 null/positive and GSTP1 Ile105Val genotypes was observed. When T2DM patients with OGG1 Ser326Cys polymorphism were compared with patients with a wild genotype, a 2-3 times statistically significant increase has been observed (OR 1.858, 95% CI=1.099-3.141, p=0.021). The combined effect of GSTM1 null and OGG1 variant genotype frequencies has shown to be statistically significant. Similarly, the risk of T2DM was statistically increased with GSTM1 null (OR=3.841, 95% CI=2.28-6.469), GSTT1 null+GSTP1 (H+M) (OR=4.118, 95% CI=1.327-12.778) and GSTM1 null+OGG1 (H+M) (OR=3.322, 95% CI=1.898-5.816) and GSTT1 null+OGG1 (H+M) (OR=2.179, 95% CI=1.083-4.386) as compared to the control group. According to our study results, it has been observed that the combined evaluation of GSTM1-GSTT1-GSTP1 and OGG1 Ser326Cys gene polymorphisms can be used as candidate genes in the etiology of T2DM, especially in the development of T2DM.  相似文献   

17.
The authors have recently demonstrated a significant gene-environment interaction between vinyl chloride exposure and polymorphisms in the DNA repair protein XRCC1 on the occurrence of mutant p53 biomarkers of vinyl chloride-induced genetic damage. The aim of this study was to examine the polymorphisms in the glutathione S-transferases (GSTs) as potential modifiers of this relationship, since these enzymes may be involved in the phase II metabolism of the reactive intermediates of vinyl chloride. A cohort of 211 French vinyl chloride workers was genotyped for common polymorphisms in GSTM1, GSTT1 and GSTP1. Although no independent, statistically significant effect of these polymorphisms on the occurrence of the mutant p53 biomarker was found, the null GSTM1 and null GSTT1 polymorphisms were found to interact with the XRCC 1 polymorphism to increase the occurrence of the biomarker such that, for example, workers with at least one variant XRCC1 allele who were null for both GSTM1 and GSTT1 had a significant odds ratio for the biomarker (OR =8.4, 95% CI = 1.3 54.0) compared with workers who were wild-type for all alleles, controlling for potential confounders including cumulative vinyl chloride exposure.  相似文献   

18.
The aim of this study was to investigate associations between genetic variability in specific Glutathione S-transferases (GST) genes (GSTM1, GSTT1 and GSTP1) and susceptibility to breast cancer. Genotypes of blood specimen DNA were determined for 65 women with incident cases of breast cancer and 108 control subjects. Associations between specific genotypes and the development of breast cancer were examined by the use of logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Neither GSTT1 nor GSTM1 homozygous null genotype was associated with a significant increased risk of developing breast cancer. The presence of valine alleles compared to isoleucine alleles in codon 105 in GSTP1 did not increase the risk of breast cancer development. The risk of breast cancer associated with a combined GSTT1 and GSTM1 null genotype was 3.37 (95% CI = 0.76-2.95, p = 0.115). The only significant association between increased risk of breast cancer development and GSTs polymorphisms was found when GSTT1 null, GSTM1 null and the presence of valine in GSTP1 in codon 105 were combined (p < 0.048, OR = 3.75, 95% CI = 1.01-13.90). Our findings suggest that combined genetic variability in members of the GST gene family may be associated with an increased susceptibility to breast cancer.  相似文献   

19.
Polymorphism of GSTM1 and GSTP1 genes was studied in patients with cystic fibrosis (CF) and chronic bronchopulmonary diseases (CBPD) living in Bashkortostan. A combination of certain GSTM1 and GSTP1 genotypes accompanied by severe mutations in CFTR gene proved to intensify a pathologic process in respiratory organs of patients with CF; a combination of the normal GSTM1 and heterozygous I/V GSTP1 genotypes is the most favorable (OR = 4.49; chi 2 = 11.53, P < 0.002). In patients with CBPD, a combination of the GSTM1 null genotype and the homozygous GSTP1 V/V genotype is the most common (5.5% versus 1.3% in control; chi 2 = 3.01, P = 0.08). The frequency of this genotype is highest in groups of patients with recurrent bronchitis (8.1%; P = 0.07; OR = 6.75) and bronchiectatic disease (BED) (9.1%, P > 0.10, OR = 7.65). A combination of the null GSTM1 and I/V GSTP1 genotypes was found in 40.0% of patients with chronic nonobstructive bronchitis (chi 2 = 4.87; P = 0.03; OR = 4.03). Among patients with BED, a proportion of individuals with the normal GSTM1 and I/V GSTP1 genotypes was increased (36.4% versus 19.4% in control). In patients with chronic obstructive pulmonary disease (COPD), the frequencies of the GSTM1 and GSTP1 genotype combinations virtually did not differ from those in the control group suggesting that COPD severity is not related to changes in activities of glutathione S-transferases M1 and P1.  相似文献   

20.
We evaluated the possible influence of glutathione S-transferase mu (GSTM1) and glutathione S-transferase theta (GSTT1) genes on genetic damage due to occupational exposure, which contributes to accelerate ageing. This study was conducted on 120 car auto repair workshop workers exposed to occupational hazards and 120 controls without this kind of exposure. The null and non-null genotypes of GSTM1 and GSTT1 genes were determined by multiplex PCR. Micronucleus frequency, Comet tail length and relative telomere length differences between the null and non-null genotypes of the GSTM1 gene were significantly greater in the exposed group. Lack of GSTT1 did not affect the damage biomarkers significantly (P > 0.05), while lack of GSTM1 was associated with greater susceptibility to genomic damage due to occupational exposure. It was concluded that early ageing is under the influence of these genes and the environmental and socio-demographic factors. Duration of working time was significantly associated with micronucleus frequency, Comet tail length and relative telomere length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号