首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contributions of amiloride-sensitive and -insensitive fractions of alveolar fluid clearance in adult ventilated rats were studied under control conditions and after beta-adrenergic stimulation. Rats were instilled with a 5% albumin solution containing terbutaline (10(-4) M) or dibutyryl-cGMP (DBcGMP; 10(-4) M) with or without the cyclic nucleotide-gated cation channel inhibitor l-cis-diltiazem (10(-3) M) and/or amiloride (10(-3) M). Alveolar fluid clearance over 1 h was 18 +/- 2% in controls. In controls, amiloride inhibited 46 +/- 15% of alveolar fluid clearance, whereas l-cis-diltiazem had no inhibitory effect. Terbutaline and DBcGMP stimulated alveolar fluid clearance by 85 +/- 3 and 36 +/- 5%, respectively. Amiloride and l-cis-diltiazem inhibited nearly equal fractions of terbutaline-stimulated alveolar fluid clearance when given alone. Amiloride and l-cis-diltiazem given together inhibited a significantly larger fraction of alveolar fluid clearance in terbutaline-stimulated rats and in DBcGMP-stimulated rats. Based on these data, terbutaline stimulation recruited both amiloride-sensitive and l-cis-diltiazem-sensitive pathways. In contrast, DBcGMP mainly recruited l-cis-diltiazem-sensitive pathways. Therefore, the amiloride-insensitive fraction of Na+-driven alveolar fluid clearance may be partly mediated through cyclic nucleotide-gated cation channels and activated by an increase in intracellular cGMP.  相似文献   

2.
Although keratinocyte growth factor (KGF) protects against experimental acute lung injury, the mechanisms for the protective effect are incompletely understood. Therefore, the time-dependent effects of KGF on alveolar epithelial fluid transport were studied in rats 48-240 h after intratracheal administration of KGF (5 mg/kg). There was a marked proliferative response to KGF, measured both by in vivo bromodeoxyuridine staining and by staining with an antibody to a type II cell antigen. In controls, alveolar liquid clearance (ALC) was 23 +/- 3%/h. After KGF pretreatment, ALC was significantly increased to 30 +/- 2%/h at 48 h, to 39 +/- 2%/h at 72 h, and to 36 +/- 3%/h at 120 h compared with controls (P < 0.05). By 240 h, ALC had returned to near-control levels (26 +/- 2%/h). The increase in ALC was explained primarily by the proliferation of alveolar type II cells, since there was a good correlation between the number of alveolar type II cells and the increase in ALC (r = 0.92, P = 0.02). The fraction of ALC inhibited by amiloride was similar in control rats (33%) as in 72-h KGF-pretreated rats (38%), indicating that there was probably no major change in the apical pathways for Na uptake in the KGF-pretreated rats at this time point. However, more rapid ALC at 120 h, compared with 48 h after KGF treatment, may be explained by greater maturation of alpha-epithelial Na channel, since its expression was greater at 120 than at 48 h, whereas the number of type II cells was the same at these two time points. beta-Adrenergic stimulation with terbutaline 72 h after KGF pretreatment further increased ALC to 50 +/- 7%/h (P < 0.5). In summary, KGF induced a sustained increase over 120 h in the fluid transport capacity of the alveolar epithelium. This impressive upregulation in fluid transport was further enhanced with beta-adrenergic agonist therapy, thus providing evidence that two different treatments can simultaneously increase the fluid transport capacity of the alveolar epithelium.  相似文献   

3.
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain. Thus PI(4,5)P(2) effects on alveolar fluid clearance were studied in male and female rats. An isosmolar 5% albumin solution was intrapulmonary instilled; alveolar fluid clearance was studied for 1 h. Female rats had a 37 ± 19% higher baseline alveolar fluid clearance than male rats. Bilateral ovariectomy attenuated this gender difference. Compared with controls, PI(4,5)P(2) instillation (300 μM) increased alveolar fluid clearance by ~93% in both genders. Amiloride or the specific αENaC small-interfering RNA inhibited baseline and PI(4,5)P(2)-stimulated alveolar fluid clearance in both genders, indicating a dependence on amiloride-sensitive pathways. The fraction of amiloride inhibition was greater in PI(4,5)P(2)-instilled rats (male: 64 ± 10%; female: 70 ± 11%) than in controls (male: 30 ± 6%; female: 44 ± 8%). PI(4,5)P(2) instillation lacked additional alveolar fluid clearance stimulation above that of terbutaline, nor did propranolol inhibit alveolar fluid clearance after PI(4,5)P(2) instillation, indicating that PI(4,5)P(2) stimulation was not secondary to endogenous β-adrenoceptor activation. PI(4,5)P(2) amine instillation resulted in an intermediate alveolar fluid clearance stimulation, suggesting that, to reach maximal alveolar fluid clearance stimulation, PI(4,5)P(2) must reside in cell membranes. In summary, PI(4,5)P(2) instillation upregulated in vivo alveolar fluid clearance similar to short-term β-adrenoceptor upregulation of alveolar fluid clearance. PI(4,5)P(2) stimulation was mediated partly by increased amiloride-sensitive Na transport. There exist important gender-related effects suggesting a female advantage that may have clinical implications for resolution of acute lung injury.  相似文献   

4.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

5.
Stimulation of active fluid transport with beta-adrenergic receptor (betaAR) agonists can accelerate the resolution of alveolar edema. However, chronic betaAR-agonist administration may cause betaAR desensitization and downregulation that may impair physiological responsiveness to betaAR-agonist stimulation. Therefore, we measured baseline and terbutaline- (10(-3) M) stimulated alveolar fluid clearance in mice that received subcutaneously (miniosmotic pumps) either saline or albuterol (2 mg. kg(-1). day(-1)) for 1, 3, or 6 days. Continuous albuterol administration increased plasma albuterol levels (10(-5) M), an effect that was associated with 1) a significant decrease in betaAR density and 2) attenuation, but not ablation, of maximal terbutaline-induced cAMP production. Forskolin-mediated cAMP-release was unaffected. Continuous albuterol infusion stimulated alveolar fluid clearance on day 1 but did not increase alveolar fluid clearance on days 3 and 6. However, terbutaline-stimulated alveolar fluid clearance in albuterol-treated mice was not reduced compared with saline-treated mice. Despite significant reductions in betaAR density and agonist-mediated cAMP production by long-term betaAR-agonist exposure, maximal betaAR-agonist-mediated increase in alveolar fluid clearance is not diminished in mice.  相似文献   

6.
We used siRNA against the alpha-ENaC (epithelial Na channel) subunit to investigate ENaC involvement in lung fluid absorption in rats by the impermeable tracer technique during baseline and after beta-adrenoceptor stimulation by terbutaline. Terbutaline stimulation of lung fluid absorption increased fluid absorption by 165% in pSi-0-pretreated rat lungs (irrelevant siRNA-generating plasmid). Terbutaline failed to increase lung fluid absorption in rats given the specific alpha-ENaC siRNA-generating plasmid (pSi-4). pSi-4 pretreatment reduced baseline lung fluid absorption by approximately 30%. alpha-ENaC was undetectable in pSi-4-pretreated lungs, regardless of condition but was normal in pSi-0-pretreated lungs. We carried out a dose-response analysis where rats were given 0-200 microg/kg body wt pSi-4, and alpha-ENaC mRNA and protein expressions were analyzed. To reach IC(50) for alpha-ENaC mRNA expression, 32 microg/kg body wt pSi-4 was needed, and to reach IC(50) for alpha-ENaC protein expression, 59 microg/kg body wt pSi-4 was needed. We tested for lung tissue specificity and found no changes in beta-ENaC expression, at either mRNA or protein level, as well as no changes in alpha(1)-Na-K-ATPase protein expression. We isolated alveolar epithelial type II cells 24 h after in vivo pSi-4 pretreatment. In these cells, alpha-ENaC mRNA was undetectable, demonstrating that alveolar epithelial ENaC expression was attenuated after intratracheal alpha-ENaC siRNA-generating plasmid DNA instillation. We tested for organ specificity and found no changes in kidney alpha- and beta-ENaC mRNA and protein expression. Thus we provide conclusive evidence that beta-adrenoceptor stimulation of lung fluid absorption is critically ENaC dependent, whereas baseline lung fluid absorption seemed less ENaC dependent.  相似文献   

7.
Our recent experimental work demonstrated that a neutrophil-dependent inflammatory response in the lung prevented the normal up-regulation of alveolar fluid clearance by catecholamines following hemorrhagic shock. In this study, we tested the hypothesis that the release of NO within the airspaces of the lung was responsible for the shock-mediated failure of the alveolar epithelium to respond to catecholamines in rats. Hemorrhagic shock was associated with an inducible NO synthase (iNOS)-dependent increase in the lung production of NO and a failure of the alveolar epithelium to up-regulate vectorial fluid transport in response to beta-adrenergic agonists. Inhibition of iNOS restored the normal catecholamine-mediated up-regulation of alveolar liquid clearance. Airspace instillation of dibutyryl cAMP, a stable analog of cAMP, restored the normal fluid transport capacity of the alveolar epithelium after prolonged hemorrhagic shock, whereas direct stimulation of adenyl cyclase by forskolin had no effect. Pretreatment with pyrrolidine dithiocarbamate or sulfasalazine attenuated the iNOS-dependent production of NO in the lung and restored the normal up-regulation of alveolar fluid clearance by catecholamines after prolonged hemorrhagic shock. Based on in vitro studies with an alveolar epithelial cell line, A549 cells, the effect of sulfasalazine appeared to be mediated in part by inhibition of NF-kappaB activation, and the protective effect was mediated by the inhibition of IkappaBalpha protein degradation. In summary, these results provide the first in vivo evidence that NO, released within the airspaces of the lung probably secondary to the NF-kappaB-dependent activation of iNOS, is a major proximal inflammatory mediator that limits the rate of alveolar epithelial transport after prolonged hemorrhagic shock by directly impairing the function of membrane proteins involved in the beta-adrenergic receptor-cAMP signaling pathway in alveolar epithelium.  相似文献   

8.
Alveolar and lung liquid clearance in anesthetized rabbits   总被引:6,自引:0,他引:6  
Alveolar and lung liquid clearance were studied over 8 h in intact anesthetized ventilated rabbits by instillation of either isosmolar Ringer lactate (2 ml/kg) or autologous plasma (2 or 3 ml/kg) into one lower lobe. The half time for lung liquid clearance of the isosmolar Ringer lactate was 3.3 h and that for plasma clearance was 6 h. In the plasma experiments, the alveolar protein concentration after 1 h was 5.2 +/- 0.8 g/dl, which was significantly greater than the initial instilled protein concentration of 4.3 +/- 0.7 g/dl (P less than 0.05). Thus alveolar protein concentration increased by 21 +/- 12% over 1 h, which matched clearance from the entire lung of 19 +/- 11% of the instilled volume. Overall the rate of alveolar and lung liquid clearance in rabbits was significantly faster than in prior studies in dogs and sheep. The fast alveolar liquid clearance rate in rabbits was not due to higher endogenous catecholamine release, because intravenous and alveolar (5 x 10(-5) M) propranolol did not slow the clearance. Also, beta-adrenergic therapy with alveolar terbutaline (10(-5) or 10(-4) M) did not increase the alveolar or lung liquid clearance rates. Phloridzin (10(-3) M) did not slow alveolar liquid clearance. However, amiloride (10(-4) M) inhibited 75% of the basal alveolar liquid clearance in rabbits, thus providing evidence that alveolar liquid clearance in rabbits depends primarily on sodium-dependent transport. This rabbit study provides further evidence for important species differences in the basal rates of alveolar liquid and solute clearance as well as the response to beta-adrenergic agonists and ion transport inhibitors.  相似文献   

9.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   

10.
There is little information regarding the effect of hypoxia on alveolar fluid clearance capacity. We measured alveolar fluid clearance, lung water volume, plasma catecholamine concentrations, and serum osmolality in rats exposed to 10% oxygen for up to 120 h and explored the mechanisms responsible for the increase in alveolar fluid clearance. The principal results were 1) alveolar fluid clearance did not change for 48 h and then increased between 72 and 120 h of exposure to hypoxia; 2) although nutritional impairment during hypoxia decreased basal alveolar fluid clearance, endogenous norepinephrine increased net alveolar fluid clearance; 3) the changes of lung water volume and serum osmolality were not associated with those of alveolar fluid clearance; 4) an administration of beta-adrenergic agonists further increased alveolar fluid clearance; and 5) alveolar fluid clearance returned to normal within 24 h of reoxygenation after hypoxia. In conclusion, alveolar epithelial fluid transport capacity increases in rats exposed to hypoxia. It is likely that a combination of endogenous norepinephrine and nutritional impairment regulates alveolar fluid clearance under hypoxic conditions.  相似文献   

11.
We tested the hypothesis that labor-induced epinephrine release would stimulate alveolar fluid clearance in preterm fetuses. Preterm fetuses were obtained by cesarean section from timed-pregnant guinea pigs at 61-69 days postconception. Fetal guinea pigs were euthanized and placed on continuous positive airway pressure oxygenation, and an isosmolar 5% albumin solution was instilled. Alveolar fluid clearance was measured over 1 h. The fetal lung began to absorb fluid at 64-66 days postconception, and at birth, alveolar fluid clearance quadrupled. Baseline alveolar fluid clearance when present was sensitive to propranolol inhibition and depended on beta-adrenergic stimulation. Measurements of plasma epinephrine in fetal animals confirmed high epinephrine levels in 66- to 69-day postconception fetuses. Prenatal alveolar fluid clearance when present was highly amiloride sensitive, suggesting that amiloride-sensitive Na+ channels were critical. Oxytocin-induced labor initiated an amiloride- and propranolol-sensitive net alveolar fluid clearance in 61-day-gestation animals. Moreover, oxytocin induced significant epinephrine release in all fetuses. These results have clinical implications for infants delivered by cesarean section before the onset of labor. Use of pharmacological agents to induce labor may reduce the occurrence and severity of perinatal respiratory distress.  相似文献   

12.
Exposure of adult rats to 100% O(2) results in lung injury and decreases active sodium transport and lung edema clearance. It has been reported that beta-adrenergic agonists increase lung edema clearance in normal rat lungs by upregulating alveolar epithelial Na(+)-K(+)-ATPase function. This study was designed to examine whether isoproterenol (Iso) affects lung edema clearance in rats exposed to 100% O(2) for 64 h. Active Na(+) transport and lung edema clearance decreased by approximately 44% in rats exposed to acute hyperoxia. Iso (10(-6) M) increased the ability of the lung to clear edema in room-air-breathing rats (from 0.50 +/- 0.02 to 0.99 +/- 0. 05 ml/h) and in rats exposed to 100% O(2) (from 0.28 +/- 0.03 to 0. 86 +/- 0.09 ml/h; P < 0.001). Disruption of intracellular microtubular transport of ion-transporting proteins by colchicine (0. 25 mg/100 g body wt) inhibited the stimulatory effects of Iso in hyperoxia-injured rat lungs, whereas the isomer beta-lumicolchicine, which does not affect microtubular transport, did not inhibit active Na(+) transport stimulated by Iso. Accordingly, Iso restored the lung's ability to clear edema after hyperoxic lung injury, probably by stimulation of the recruitment of ion-transporting proteins (Na(+)-K(+)-ATPase) from intracellular pools to the plasma membrane in rat alveolar epithelium.  相似文献   

13.
The extent to which endogenously generated nitric oxide alters Na(+) transport across the mammalian alveolar epithelium in vivo has not been documented. Herein we measured alveolar fluid clearance and nasal potential differences in mice lacking the inducible form of nitric oxide synthase [iNOS; iNOS(-/-)] and their corresponding wild-type controls [iNOS(+/+)]. Alveolar fluid clearance values in iNOS(+/+) and iNOS(-/-) anesthetized mice with normal oxygenation and acid-base balance were ~30% of instilled fluid/30 min. In both groups of mice, fluid absorption was dependent on vectorial Na(+) movement. Amiloride (1.5 mM) decreased alveolar fluid clearance in iNOS(+/+) mice by 61%, whereas forskolin (50 microM) increased alveolar fluid clearance by 55% by stimulating amiloride-insensitive pathways. Neither agent altered alveolar fluid clearance in iNOS(-/-) mice. Hyperoxia upregulated iNOS expression in iNOS(+/+) mice and decreased their amiloride-sensitive component of alveolar fluid clearance but had no effect on the corresponding values in iNOS(-/-) mice. Nasal potential difference measurements were consistent with alveolar fluid clearance in that both groups of mice had similar baseline values, which were amiloride sensitive in the iNOS(+/+) but not in the iNOS(-/-) mice. These data suggest that nitric oxide produced by iNOS under basal conditions plays an important role in regulating amiloride-sensitive Na(+) channels in alveolar and airway epithelia.  相似文献   

14.
Knowledge about the conversion of the epithelium in the distal air spaces of the lung from secretion to absorption is imperative to the understanding of postnatal lung development; little such information is available in rats. Distal air space fluid clearance was therefore measured in 21- to 22-day gestation rat fetuses and newborn (40 h) rats. Distal air space fluid clearance was measured from the increase in (131)I-albumin concentration in an isosmolar, physiological solution instilled into the developing lungs. There was no net fluid movement across the distal air space epithelium in the lungs of 21-day gestation fetuses. Twenty-four hours later, distal air space fluid was cleared at a rapid rate in the 22-day gestation fetuses. Within the first 40 h after birth, the rate rapidly declined to adult levels. The high distal air space fluid clearance at 22 days gestation and at 40 h after birth was mediated by beta-adrenergic receptors as demonstrated by elevated plasma epinephrine levels and inhibition by propranolol. Interestingly, the elevated distal air space fluid clearance in the 22-day gestation fetuses was only minimally amiloride sensitive; however, amiloride sensitivity increased over the first 40 h after birth. In conclusion, these studies demonstrate that 1) rapid rates of net alveolar fluid clearance occur late in gestation in the rat and 2) this clearance is driven by elevations of endogenous epinephrine.  相似文献   

15.
Inadequate nutrition complicates the clinical course of critically ill patients, and many of these patients develop pulmonary edema. However, little is known about the effect of malnutrition on the mechanisms that resolve alveolar edema. Therefore, we studied the mechanisms responsible for the decrease in alveolar fluid clearance in rats exposed to malnutrition. Rats were allowed access to water, but not to food, for 120 h. Then, the left and right lungs were isolated for the measurement of lung water volume and alveolar fluid clearance, respectively. The rate of alveolar fluid clearance was measured by the progressive increase in the concentration of Evans blue dye that was instilled into the distal air spaces with an isosmolar 5% albumin solution over 1 h. Malnutrition decreased alveolar fluid clearance by 38% compared with controls. Amiloride (10(-3) M) abolished alveolar fluid clearance in malnourished rats. Either refeeding for 120 h following nutritional deprivation for 120 h or an oral supply of sodium glutamate during nutritional deprivation for 120 h restored alveolar fluid clearance to 91 and 86% of normal, respectively. Dibutyryl-cGMP, a cyclic nucleotide-gated cation channel agonist, increased alveolar fluid clearance in malnourished rats supplied with sodium glutamate. Terbutaline, a beta(2)-adrenergic agonist, increased alveolar fluid clearance in rats under all conditions (control, malnutrition, refeeding, and glutamate-treated). These results indicate that malnutrition impairs primarily amiloride-insensitive and dibutyryl-cGMP-sensitive alveolar fluid clearance, but this effect is partially reversible by refeeding, treatment with sodium glutamate, or beta-adrenergic agonist therapy.  相似文献   

16.
Pulmonary edema is common in organ donors and lung transplant recipients. Therefore, we assessed the responsiveness of human donor lungs to pharmacological agents that stimulate clearance of alveolar edema. Organ donors whose lungs were rejected for transplantation were studied. After resection, transport (4 degrees C), and rewarming (37 degrees C) of lungs, alveolar fluid clearance was measured with (n = 8 donors) or without (n = 23 donors) beta-adrenergic stimulation. Terbutaline-stimulated clearance (10(-4) M) was higher than unstimulated clearance (7.1 +/- 1.3 vs. 4.8 +/- 2.4%/h, P < 0.01). Second, we determined whether medications given to the organ donor were associated with the extent of pulmonary edema or the rate of alveolar fluid clearance in the harvested lung. Preharvest administration of dopamine in low to moderate doses was associated with faster alveolar fluid clearance (r = 0.62, P < 0.01). Preharvest administration of diuretics was associated with lower extravascular lung water-to-dry weight ratios. This study provides the first evidence that a beta(2)-adrenergic agonist stimulates alveolar fluid clearance in the human donor lung. Aerosolized beta(2)-adrenergic agonists may have therapeutic value for hastening the resolution of alveolar edema during the management of donors before resection of lungs for transplantation or in the posttransplant setting.  相似文献   

17.
To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.  相似文献   

18.
We examined whether hypoxic exposure in vivo would influence transalveolar fluid transport in rats. We found a significant decrease in alveolar fluid clearance of the rats exposed to 10% oxygen for 48 h. Terbutaline did not stimulate alveolar fluid clearance, and alveolar fluid cAMP levels were lower than those determined in normoxia experiment. Hypoxia did not influence the alveolar fluid lactate dehydrogenase levels, Evans blue dye fluid-to-serum concentration ratio, or lung wet-to-dry weight ratio, indicating no significant change in the permeability of alveolar-capillary barrier. Histological examination showed no significant fluid accumulation into the interstitium and the alveolar space. Hypoxia did not reduce lung ATP content; however, we found significant decrease in Na(+)-K(+)-ATPase hydrolytic activity in lung tissue preparations and isolated alveolar type II cells. Our data indicate that hypoxic exposure in vivo impairs transalveolar fluid transport, and this impairment is related to the decrease in alveolar epithelial Na(+)-K(+)-ATPase hydrolytic activity but is not secondary to the alteration of cellular energy source.  相似文献   

19.
We determined that rats fed a liquid diet containing ethanol (36% of calories) for 6 wk had decreased (P < 0.05) net vectorial fluid transport and increased (P < 0.05) bidirectional protein permeability across the alveolar epithelium in vivo compared with rats fed a control diet. However, both groups increased (P < 0.05) fluid transport in response to epinephrine (10(-5) M) stimulation, indicating that transcellular sodium transport was intact. In parallel, type II cells isolated from ethanol-fed rats and cultured for 8 days formed a more permeable monolayer as reflected by increased (P < 0.05) leak of [(14)C]inulin. However, type II cells from ethanol-fed rats had more sodium-permeant channels in their apical membranes than type II cells isolated from control-fed rats, consistent with the preserved response to epinephrine in vivo. Finally, the alveolar epithelium of ethanol-fed rats supplemented with L-2-oxothiaxolidine-4-carboxylate (Procysteine), a glutathione precursor, had the same (P < 0.05) net vectorial fluid transport and bidirectional protein permeability in vivo and permeability to [(14)C]inulin in vitro as control-fed rats. We conclude that chronic ethanol ingestion via glutathione deficiency increases alveolar epithelial intercellular permeability and, despite preserved or even enhanced transcellular sodium transport, renders the alveolar epithelium susceptible to acute edematous injury.  相似文献   

20.
Transepithelial alveolar sodium (Na+) transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) constitutes the driving force for removal of fluid from the alveolar space. To define the role of the beta-ENaC subunit in vivo in the mature lung, we studied a previously established mouse strain harboring a disruption of the beta-ENaC gene locus resulting in low levels of beta-ENaC mRNA expression. Real-time RT-PCR experiments confirmed that beta-ENaC mRNA levels were decreased by >90% in alveolar epithelial cells from homozygous mutant (m/m) mice. beta-ENaC protein was undetected in lung homogenates from m/m mice by Western blotting, but alpha- and gamma-ENaC proteins were increased by 83% and 45%, respectively, compared with wild-type (WT) mice. At baseline, Na+-driven alveolar fluid clearance (AFC) was significantly reduced by 32% in m/m mice. Amiloride at the concentration 1 mM inhibited AFC by 75% and 34% in WT and m/m mice, respectively, whereas a higher concentration (5 mM) induced a 75% inhibition of AFC in both groups. The beta2-agonist terbutaline significantly increased AFC in WT but not in m/m mice. These results show that despite the compensatory increase in alpha- and gamma-ENaC protein expression observed in mutant mouse lung, low expression of beta-ENaC results in a moderate impairment of baseline AFC and in decreased AFC sensitivity to amiloride, suggesting a possible change in the stoichiometry of ENaC channels. Finally, adequate beta-ENaC expression appears to be required for AFC stimulation by beta2-agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号