首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To study regulation of the (Ds) transposition process in heterologous plant species, the transposase gene of Ac was fused to several promoters that are active late during plant development. These promoters are the flower-specific chalcone synthase A promoter (CHS A), the anther-specific chalcone isomerase B promoter CHI B and the pollen-specific chalcone isomerase A2 promoter CHI A2. The modified transposase genes were introduced into a tobacco tester plant. This plant contains Ds stably inserted within the leader sequence of the hygromycin resistance (HPT II) gene. As confirmed with positive control elements, excision of Ds leads to the restoration of a functional HPT II gene and to a hygromycin resistant phenotype. No hygromycin resistance was observed in negative control experiments with Ac derivatives lacking 5 regulatory sequences. Although transactivation of Ds was observed after the introduction of transposase gene fusions in calli, excision in regenerated plants was observed only for the CHS A- or CHI B-transposase gene fusions. With these modified transposase genes, somatic excision frequencies were increased (68%) and decreased (22%), respectively, compared to the situation with the Ac element itself (38%). The shifts in transactivation frequencies were not associated with significant differences in the frequencies of germinally transmitted excision events (approximately 5%). The relative somatic stability of Ds insertions bearing the CHI B-transposase gene fusion suggests the usefulness of this activator element for transposon tagging experiments.  相似文献   

2.
Summary Modified Ac and Ds elements, in combination with dominant markers (to facilitate monitoring of excision, reinsertion and segregation of the elements) were introduced into Arabidopsis thaliana ecotype Landsberg erecta. The frequencies of somatic and germinal transactivation of the Ds elements were monitored using a streptomycin resistance assay. Transactivation was significantly higher from a stable Ac (sAc) carrying a 537 by deletion of the CpG-rich 5 untranslated leader of the transposase mRNA than from a wild-type sAc. However, substitution of the central 1.77 kb of the transposase open reading frame (ORF) with a hygromycin resistance marker did not alter the excision frequency of a Ds element. -Glucuronidase (GUS) or iaaH markers were linked to the transposase source to allow the identification of plants in which the transposase source had segregated away from the transposed Ds element, eliminating the possibility of somatic or germinal re-activation. Segregation of the excision marker, Ds and sAc was monitored in the progeny of plants showing germinal excision of Ds. 29% of the plants inheriting the excision marker carried a transposed Ds element.  相似文献   

3.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

4.
Summary A line of flax, homozygous for four genes controlling resistance to flax rust, was transformed with T-DNA vectors carrying the maize transposable elements Ac and Ds to assess whether transposition frequency would be high enough to allow transposon tagging of the resistance genes. Transposition was much less frequent in flax than in Solanaceous hosts such as tobacco, tomato and potato. Transposition frequency in callus tissue, but not in plants, was increased by modifications to the transposase gene of Ac. Transactivation of the excision of a Ds element was achieved by expressing a cDNA copy of the Ac transposase gene from the Agrobacterium T-DNA 2 promoter. Progeny of three plants transformed with Ac and 15 plants transformed with Ds and the transposase gene, were examined for transposition occurring in the absence of selection. Transposition was observed in the descendants of only one plant which contained at least nine copies of Ac. Newly transposed Ac elements were observed in 25–30% of the progeny of some members of this family and one active Ac element was located 28.8 (SE=6.3) map units from the L 6 rust-resistance gene. This family will be potentially useful in our resistance gene tagging program.  相似文献   

5.
《Plant science》1995,106(2):141-155
The open reading frame coding for the transposase gene of the maize transposon Activator (Ac) was expressed in transgenic tobacco plants under the control of the promoter of the inducible gene for pathogenesis-related protein 1a (PR-1a). Excision of a non-autonomous transposable element (Ds) from chimeric β-glucuronidase (GUS) and luciferase reporter gene constructs was employed to analyze the induction of the Ac transposase by external and by internal stimuli. Applying the GUS histochemical assay, Ds excision events were detected in leaves, stems, and roots after treatment of regenerating shoots with salicylic acid (SA). Varying the SA induction procedure led to different Ds excision patterns in leaves and in roots. Furthermore, Ds excision events were also observed in non-treated, older transgenic plants in the green leaves, but not in germinal cells. Thus, the PR-1a promoter/Ac transposase gene fusion, together with the improved methods for induction of this chimeric gene, may provide a valuable tool for studying basic mechanisms of Ac transposition and for developing modified transposable element systems suitable for gene tagging in higher plants.  相似文献   

6.
The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2 promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.  相似文献   

7.
The maize transposable element, Activator (Ac), is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. In this paper, we describe somatic and germinal transactivation of Ds by chimeric transposase genes in whole plants. Constructs containing either the Ds element or the Ac transposase open reading frame (ORF) were introduced into lettue. The Ds element was located between either the 35S or the Nos promoter and a chimeric spectinomycin resistance gene (which included a transit peptide), preventing expression of spectinomycin resistance. The genomic coding region of the Ac transposase was expressed from the 35S promoter. Crosses were made between 104 independent R1 plants containing Ds and three independent R1 plants expressing transposase. The excision of Ds in F1 progenies was monitored using a phenotypic assay on spectinomycin-containing medium. Green sectors in one-third of the F1 families indicated transactivation of Ds by the transposase at different developmental stages and at different frequencies in lettuce plants. Excision was confirmed using PCR and by Southern analysis. The lack of green sectors in the majority of F1 families suggests that the majority of T-DNA insertion sites are not conducive to excision. In subsequent experiments, the F1 plants containing both Ds and the transposase were grown to maturity and the F2 seeds screened on medium containing spectinomycin. Somatic excision was again observed in several F2 progeny; however, evidence for germinal excision was observed in only one F2 family.  相似文献   

8.
The maize transposon Ac can move to a new location within the genome to create knockout mutants in transgenic plants. In rice, Ac transposon is very active but sometimes undergoes further transposition and leaves an empty mutated gene. Therefore, we developed a one-time transposon system by locating one end of the transposon in the intron of the Ac transposase gene, which is under the control of the inducible promoter (PR-1a). Treatment with salicylic acid induced transposition of this transposon, COYA, leading to transposase gene breakage in exons. The progeny plants inheriting the transposition events become stable knockout mutants, because no functional transposase could be yielded. The behavior of COYA was analyzed in single-copy transgenic rice plants. We determined the expression of the modified transposase gene and its ability to trigger transposition events in transgenic rice plants. The COYA element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Six T-DNA/Ds launch pad lines (T0) previously generated by Agrobacterium-mediated transformation of M 35-1 genotype of sorghum were confirmed by PCR. T1 plants of all six lines showed 3:1 segregation when sprayed with 12 ppm Basta herbicide, indicating single copy insertion, which was also confirmed by left border flanking sequence tag. Calli derived from pNU435-T0(1) primary transformant was co-infected with Agrobacterium-carrying iAc construct for transient expression of transposase to generate stable Ds-tagged mutants in the T0 generation. All nine regenerants were PCR-positive for Ds. However, four contained intact T-DNA/Ds launch pad, while five plants carried empty launch pad, indicating transposition of the Ds. One of these plants, IDs-T0(8), was negative for iAc PCR, indicating that it was a stable Ds-tagged mutant. Of the four plants with intact T-DNA/Ds, IDs-T0(5) carrying iAc was a double transformant and mutagenic, which can generate mutants in the subsequent generation. Hence, the transient expression of transposase system in sorghum reported here can be employed for high throughput mutagenesis.  相似文献   

10.
Acceptor sites of unlinked transposed Ds element from two T-DNA loci in tomato were mapped. Experimental data obtained from TC1 progeny testing were employed for estimation of germinal excision frequency (GEF) of Ds element and frequency of its reinsertion (FR). The donor T-DNAs 1481J and 1601D, containing a 35S:NPT transformation marker, a 35S:BAR or nos:BAR excision marker conferring phosphinothricine resistance and a Ds element in the 5 untranslated leader of the nos (or 35S): BAR gene, were located on chromosome 7 and 8, respectively. Ds transposition was induced by 105121 T-DNA carrying stabilized Ac (sAc) which provides a source of transposase and 2:GUS marker conferring -glucuronidase activity. Tomato plants harbouring the Ds in 1481J or 1601D locus and sAc were crossed and F1D, were crossed individually as seed parents to wild-type plants to generate TC1 progenies. TC1 seed was germinated on phosphinothricine (Basta)-containing medium, and individual seedlings carrying a transposed Ds and lacking sAc were identified by PCR (to detect the Ds) on phosphinothricine resistant individuals that lacked -glucuronidase activity. From segregation ratio in TC1 the germinal excision and reinsertion frequencies of the Ds element were estimated for individual F1 plants. A total of 14560 TC1 seedlings of 1481J and 16195 TC1 seedlings of 1601D was analyzed. We observed high variation between individual plants as regards both GEF and FR despite of donor locus (1481J or 1601D), however, the average germinal excision frequencies as well as average frequencies of reinsertion were very similar for both donor loci: GEF1481J = 24 %, GEF1501D = 25 %, FR1481J = 42 %, FR1601D = 46 %.  相似文献   

11.
12.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

13.
14.
Summary A mouse dihydrofolate reductase gene (DHFR), encoding an enzyme conferring methotrexate (MTX) resistance, under the control of the cauliflower mosaic virus (CaMV) 35 S promoter, was inserted within a maize nonautonomous Ds transposable element. The presence of at least one element (Ds-DHFR) can easily be monitored using methotrexate selection in plants. This chimeric element is able to transpose at a frequency similar to its unmodified progenitor in transgenic tobacco callus containing an autonomous Ac element. The orientation of the selectable marker cassette in the Ds element does not affect relative excision frequencies. Approximately two-thirds of these elements can be detected after excision while the remaining one-third cannot. The Ds-DHFR element is useful in elucidating the mechanism by which Ac/Ds transposition occurs, and allows for a rapid identification of mutants in which methotrexate resistance cosegregates with a mutant phenotype.  相似文献   

15.
The geminivirus miscanthus streak virus (MiSV) was used as a gene vector to study the transposition of the maize Ds element in rice protoplasts. Efficient excision of the Ds from the MISV vector was observed only when the MiSV vector was allowed to replicate and the plasmid expressing the transposase gene encoded by Ac was co-transfected. Under the same condition, the Ds carrying a hygromycin phosphotransferase gene (Ds::HPT) was also efficiently excised. Hygromycin-resistant calli were obtained by culturing these transfected protoplasts in order to examine the transposition of the excised Ds::HPT into the rice genome. In five out of 16 calli examined, the Ds::HPT, but not the vector sequence, was integrated into the rice genome and 8 bp target site duplication typical of Ac/Ds transposition was generated. These results show that the Ds::HPT inserted in the MISV vector transposed directly into the rice genome. This demonstrates the direct transposition of a cloned plant transposable element into the plant genome. Implications of these finding are discussed.  相似文献   

16.
The Ac/Ds transposon system of maize shows low activity in Arabidopsis. However, fusion of the CaMV 35S promoter to the transposase gene (35S::TPase) increases the abundance of the single Ac mRNA encoded by Ac and increases the frequency of Ds excision. In the experiments reported here it is examined whether this high excision frequency is associated with efficient re-insertion of the transposon. This was measured by using a Ds that carried a hygromycin resistance gene (HPT) and was inserted within a streptomycin resistance gene (SPT). Excision of Ds therefore gives rise to streptomycin resistance, while hygromycin resistance is associated with the presence of a transposed Ds or with retention of the element at its original location. Self-fertilisation of most individuals heterozygous for Ds and 35S::TPase produced many streptomycin-resistant (strepr) progeny, but in many of these families a small proportion of strepr seedlings were also resistant to hygromycin (hygr). Nevertheless, 70% of families tested did give rise to at least one strepr, hygr seedling, and over 90% of these individuals carried a transposed Ds. In contrast, the Ac promoter fusion to the transposase gene (Ac::TPase) produced fewer streprhygr progeny, and only 53% of these carried a transposed Ds. However, a higher proportion of the strepr seedlings were also hygr than after activation by 35S::TPase. We also examined the genotype of strepr, hygr seedlings and demonstrated that after activation by 35S::TPase many of these were homozygous for the transposed Ds, while this did not occur after activation by Ac::TPase. From these and other data we conclude that excisions driven by 35S::TPase usually occur prior to floral development, and that although a low proportion of strepr progeny plants inherit a transposed Ds, those that do can be efficiently selected with an antibiotic resistance gene contained within the element. Our data have important implications for transposon tagging strategies in transgenic plants and these are discussed.  相似文献   

17.
We have introduced a genetically marked Dissociation transposable element (Ds HPT ) into tomato (Lycopersicon esculentum) by Agrobacterium tumefaciens-mediated transformation. Probes for the flanking regions of the T-DNA and transposed Ds HPT elements were obtained with the inverse polymerase chain reaction (IPCR) technique and used in RFLP linkage analyses. The RFLP map location of 11 T-DNAs carrying Ds HPT was determined. The T-DNAs are distributed on 7 of the 12 tomato chromosomes. To explore the feasibility of gene tagging strategies in tomato using Ds HPT , we examined the genomic distribution of Ds HPT receptor sites relative to the location of two different, but very closely linked, T-DNA insertion sites. After crosses with plants expressing Ac transposase, the hygromycin phosphotransferase (HPT) marker on the Ds element and the excision markers -glucuronidase (GUS) and Basta resistance (BAR) facilitated the identification of plants bearing germinally transposed Ds HPT elements. RFLP mapping of 21 transposed Ds HPT elements originating from the two different T-DNA insertions revealed distinct patterns of reintegration sites.  相似文献   

18.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

19.
We have recently shown that a plasmid-borneDissociation (Ds) element can excise from extrachromosomal plasmid DNA and integrate into a plant genome in the presence of theActivator (Ac) transposase.Ds andAc-carrying plasmids were used to co-transformNicotiana plumbaginifolia protoplasts. Transgenic plants were regenerated and analyzed. Here we describe further characterization of the system and discuss its efficiency in terms of DNA transformation and transposon tagging.  相似文献   

20.
We have created a DNA construct, TREGED (transposon-and recombinase-mediated genome deletion), that will automatically induce deletions in plant genomes. TREGED contains the maizeAc/Ds transposon, the yeast R-RS site-specific recombination system, the bacterialtetR repression systems, a novel artificial superintron, and the marker genesGUS andLc. The novelty of TREGED is that only one cross is required to trigger a sequence of events leading to deletion and, simultaneously, to a color assay to detect the deletion. Crossing is done to introduceAc transposase which activatesDs transposition from TREGED to a nearby chromosome region.Ds transposition, in turn, activates recombination between an engineeredRS site on TREGED and anRS site on the transposedDs fragment, thus deleting the genome segment between TREGED andDs. The recombination event also deletesLc orGUS and part oftetR, which triggers expression ofGUS orLc color genes for an upstream or downstream deletion respectively. Each TREGED insertion site will produce multiple kinds of deletions identifiable by inspecting a single F1 plant and its progeny for colored tissue. The color markers can also be used to differentiate between deletion and other more rare events such as translocation and inversion. We anticipate TREGED will greatly simplify the steps required to obtain useful deletions—eventually allowing the creation of detailed deletion libraries. Such libraries will be particularly useful for anlaysis of gene and chromatin function in plant species with large genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号