首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin-binding proteins (PBPs), the target enzymes of beta-lactam antibiotics such as penicillins and cephalosporins, catalyze the final peptidoglycan cross-linking step of bacterial cell-wall biosynthesis. beta-Lactams inhibit this reaction because they mimic the D-alanyl-D-alanine peptide precursors of cell-wall structure. Prior crystallographic studies have described the site of beta-lactam binding and inhibition, but they have failed to show the binding of D-Ala-D-Ala substrates. We present here the first high-resolution crystallographic structures of a PBP, D-Ala-D-Ala-peptidase of Streptomyces sp. strain R61, non-covalently complexed with a highly specific fragment (glycyl-L-alpha-amino-epsilon-pimelyl-D-Ala-D-Ala) of the cell-wall precursor in both enzyme-substrate and enzyme-product forms. The 1.9A resolution structure of the enzyme-substrate Henri-Michaelis complex was achieved by using inactivated enzyme, which was formed by cross-linking two catalytically important residues Tyr159 and Lys65. The second structure at 1.25A resolution of the uncross-linked, active form of the DD-peptidase shows the non-covalent binding of the two products of the carboxypeptidase reaction. The well-defined substrate-binding site in the two crystallographic structures shows a subsite that is complementary to a portion of the natural cell-wall substrate that varies among bacterial species. In addition, the structures show the displacement of 11 water molecules from the active site, the location of residues responsible for substrate binding, and clearly demonstrate the necessity of Lys65 and or Tyr159 for the acylation step with the donor peptide. Comparison of the complexed structures described here with the structures of other known PBPs suggests the design of species-targeted antibiotics as a counter-strategy towards beta-lactamase-elicited bacterial resistance.  相似文献   

2.
A hyperthermophilic membrane-related β-1,4-endoglucanase (family 5, cellulase) of the archaeon Pyrococcus horikoshii was found to be capable of hydrolysing cellulose at high temperatures. The hyperthermophilic cellulase has promise for applications in biomass utilization. To clarify its detailed function, we determined the crystal structures of mutants of the enzyme in complex with either the substrate or product ligands. We were able to resolve different kinds of complex structures at 1.65-2.01?? (1??=0.1?nm). The structural analysis of various mutant enzymes yielded a sequence of crystallographic snapshots, which could be used to explain the catalytic process of the enzyme. The substrate position is fixed by the alignment of one cellobiose unit between the two aromatic amino acid residues at subsites +1 and +2. During the enzyme reaction, the glucose structure of cellulose substrates is distorted at subsite -1, and the β-1,4-glucoside bond between glucose moieties is twisted between subsites -1 and +1. Subsite -2 specifically recognizes the glucose residue, but recognition by subsites +1 and +2 is loose during the enzyme reaction. This type of recognition is important for creation of the distorted boat form of the substrate at subsite -1. A rare enzyme-substrate complex was observed within the low-activity mutant Y299F, which suggested the existence of a trapped ligand structure before the formation by covalent bonding of the proposed intermediate structure. Analysis of the enzyme-substrate structure suggested that an incoming water molecule, essential for hydrolysis during the retention process, might be introduced to the cleavage position after the cellobiose product at subsites +1 and +2 was released from the active site.  相似文献   

3.
Understanding of the atomic movements involved in an enzymatic reaction needs structural information on the active and inactive native enzyme molecules and on the enzyme-substrate, enzyme-intermediate, and enzyme-product(s) complexes. By using the X-ray crystallographic method, four crystal structures of Aspergillus fumigatus phytase were obtained at resolution higher than 1.7 A. The pH-dependent catalytic activity of A. fumigatus phytase was linked to three water molecules that may prevent the substrate from binding and thus block nucleophilic attack of the catalytic imidazole nitrogen. Comparison of various structures also identified the water molecule that attacks the phosphamide bond during the hydrolysis process, and established the hydrolysis pathway of the intermediate. Additionally, two reaction product phosphates were observed at the active site, suggesting a possible product release pathway after hydrolysis of the intermediate. These results can help explain the catalytic mechanism throughout the whole acid phosphatase family, as all key residues are conserved.  相似文献   

4.
Microspectrophotometry of single crystals of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium is used to compare the catalytic and regulatory properties of the enzyme in the soluble and crystalline states. Polarized absorption spectra demonstrate that chromophoric intermediates are formed between pyridoxal phosphate at the active site of the beta subunit and added substrates, substrate analogs, and reaction intermediate analogs. Although the crystalline and soluble forms of the enzyme produce some of the same enzyme-substrate intermediates, including Schiff base and quinonoid intermediates, in some cases the equilibrium distribution of these intermediates differs in the two states of the enzyme. Ligands which bind to the active site of the alpha subunit alter the distribution of intermediates formed at the active site of the beta subunit in both the crystalline and soluble states. The three-dimensional structures of the tryptophan synthase alpha 2 beta 2 complex and of a derivative with indole-3-propanol phosphate bound at the active site of the alpha subunit have recently been reported (Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) J. Biol. Chem. 264, 17857-17871). Our present findings help to establish experimental conditions for selecting defined intermediates for future x-ray crystallographic analysis of the alpha 2 beta 2 complex with ligands bound at the active sites of both alpha and beta subunits. These crystallographic studies should explain how catalysis occurs at the active site of the beta subunit and how the binding of a ligand to one active site affects the binding of a ligand to the other active site which is 25 A away.  相似文献   

5.
To understand the processes involved in the catalytic mechanism of pyridoxal kinase (PLK),1 we determined the crystal structures of PLK.AMP-PCP-pyridoxamine, PLK.ADP.PLP, and PLK.ADP complexes. Comparisons of these structures have revealed that PLK exhibits different conformations during its catalytic process. After the binding of AMP-PCP (an analogue that replaced ATP) and pyridoxamine to PLK, this enzyme retains a conformation similar to that of the PLK.ATP complex. The distance between the reacting groups of the two substrates is 5.8 A apart, indicating that the position of ATP is not favorable to spontaneous transfer of its phosphate group. However, the structure of PLK.ADP.PLP complex exhibited significant changes in both the conformation of the enzyme and the location of the ligands at the active site. Therefore, it appears that after binding of both substrates, the enzyme-substrate complex requires changes in the protein structure to enable the transfer of the phosphate group from ATP to vitamin B(6). Furthermore, a conformation of the enzyme-substrate complex before the transition state of the enzymatic reaction was also hypothesized.  相似文献   

6.
Streptomyces griseus aminopeptidase (SGAP) is a double-zinc exopeptidase with a high preference toward large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X-ray crystallographic analysis of the SGAP complexes with methionine (1.53 A resolution), leucine (1.70 A resolution), and phenylalanine (1.80 A resolution). These three high-resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme-substrate and enzyme-product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme-substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc-bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP.  相似文献   

7.
X-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein-DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG-DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210-220 and 251-264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG-DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway.  相似文献   

8.
Argininosuccinate synthetase reversibly catalyzes the ATP-dependent condensation of a citrulline with an aspartate to give argininosuccinate. The structures of the enzyme from Thermus thermophilus HB8 complexed with intact ATP and substrates (citrulline and aspartate) and with AMP and product (argininosuccinate) have been determined at 2.1- and 2.0-A resolution, respectively. The enzyme does not show the ATP-induced domain rotation observed in the enzyme from Escherichia coli. In the enzyme-substrate complex, the reaction sites of ATP and the bound substrates are adjacent and are sufficiently close for the reaction to proceed without the large conformational change at the domain level. The mobility of the triphosphate group in ATP and the side chain of citrulline play an important role in the catalytic action. The protonated amino group of the bound aspartate interacts with the alpha-phosphate of ATP and the ureido group of citrulline, thus stimulating the adenylation of citrulline. The enzyme-product complex explains how the citrullyl-AMP intermediate is bound to the active site. The stereochemistry of the catalysis of the enzyme is clarified on the basis of the structures of tAsS (argininosuccinate synthetase from T. thermophilus HB8) complexes.  相似文献   

9.
Methionine adenosyltransferases (MATs) are a family of enzymes in charge of synthesising S-adenosylmethionine (SAM), the most important methyl donor present in living organisms. These enzymes use methionine and ATP as reaction substrates, which react in a S(N)2 fashion where the sulphur atom from methionine attacks C5' from ATP while triphosphate chain is cleaved. A MAT liver specific isoenzyme has been detected, which exists in two distinct oligomeric forms, a dimer (MAT III) and a tetramer (MAT I). Our previously reported crystal structure of MAT I complexed with an inhibitor led to the identification of the methionine-binding site. We present here the results obtained from the complex of MAT I with a competitive inhibitor of methionine, (2S,4S)-amino-4,5-epoxypentanoic acid (AEP), which presents the same features at the methionine binding site reported before. We have also analysed several complexes of this enzyme with methionine and ATP and analogues of them, in order to characterise the interaction that is produced between both substrates. The crystal structures of the complexes reveal how the substrates recognise each other at the active site of the enzyme, and suggest a putative binding site for the product SAM. The residues involved in the interactions of substrates and products with MAT have been identified, and the results agree with all the previous data concerning mutagenesis experiments and crystallographic work. Moreover, all the information provided from the analysis of the complexes has allowed us to postulate a catalytic mechanism for this family of enzymes. In particular, we propose a key role for Lys182 in the correct positioning of the substrates, and Asp135(*), in stabilising the sulphonium group formed in the product (SAM).  相似文献   

10.
Cyclooxygenase enzymes: catalysis and inhibition   总被引:4,自引:0,他引:4  
Scientists working in the field of cyclooxygenase enzymes have witnessed several major advances in the past two years. Crystal structures of fatty acid substrate and prostaglandin product complexes have been elucidated. Elegant site-directed mutagenesis studies have pinpointed the roles of key amino acids within the active site. Together, these results have provided key insights into the overall reaction mechanism. Detailed kinetics, spectroscopic and crystallographic studies have shed new light on the complex mechanism of inhibition of these fascinating enzymes. Finally, novel substrates of cyclooxygenase-2 have been identified.  相似文献   

11.
BACKGROUND: Barley beta-D-glucan glucohydrolases represent family 3 glycoside hydrolases that catalyze the hydrolytic removal of nonreducing glucosyl residues from beta-D-glucans and beta-D-glucooligosaccharides. After hydrolysis is completed, glucose remains bound in the active site. RESULTS: When conduritol B epoxide and 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside are diffused into enzyme crystals, they displace the bound glucose and form covalent glycosyl-enzyme complexes through the Odelta1 of D285, which is thereby identified as the catalytic nucleophile. A nonhydrolyzable S-glycosyl analog, 4(I), 4(III), 4(V)-S-trithiocellohexaose, also diffuses into the active site, and a S-cellobioside moiety positions itself at the -1 and +1 subsites. The glycosidic S atom of the S-cellobioside moiety forms a short contact (2.75 A) with the Oepsilon2 of E491, which is likely to be the catalytic acid/base. The glucopyranosyl residues of the S-cellobioside moiety are not distorted from the low-energy 4C(1) conformation, but the glucopyranosyl ring at the +1 subsite is rotated and translated about the linkage. CONCLUSIONS: X-ray crystallography is used to define the three key intermediates during catalysis by beta-D-glucan glucohydrolase. Before a new hydrolytic event begins, the bound product (glucose) from the previous catalytic reaction is displaced by the incoming substrate, and a new enzyme-substrate complex is formed. The second stage of the hydrolytic pathway involves glycosidic bond cleavage, which proceeds through a double-displacement reaction mechanism. The crystallographic analysis of the S-cellobioside-enzyme complex with quantum mechanical modeling suggests that the complex might mimic the oxonium intermediate rather than the enzyme-substrate complex.  相似文献   

12.
F Mancia  G A Smith  P R Evans 《Biochemistry》1999,38(25):7999-8005
X-ray crystal structures of methylmalonyl-CoA mutase in complexes with substrate methylmalonyl-CoA and inhibitors 2-carboxypropyl-CoA and 3-carboxypropyl-CoA (substrate and product analogues) show that the enzyme-substrate interactions change little during the course of the rearrangement reaction, in contrast to the large conformational change on substrate binding. The substrate complex shows a 5'-deoxyadenine molecule in the active site, bound weakly and not attached to the cobalt atom of coenzyme B12, rotated and shifted from its position in the substrate-free adenosylcobalamin complex. The position of Tyralpha89 close to the substrate explains the stereochemical selectivity of the enzyme for (2R)-methylmalonyl-CoA.  相似文献   

13.
Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the active site, disordered in the unliganded structure, is fixed in the ternary complex by participation of the cofactor and substrate binding. The psi-tropine molecule is bound in an orientation which satisfies the product configuration and the stereochemical arrangement toward the cofactor. The substrate binding site displays a complementarity to the bound substrate (psi-tropine) in its correct orientation. In addition, electrostatic interactions between the substrate and Glu156 seem to specify the binding position and orientation of the substrate. A comparison between the active sites in TR-II and TR-I shows that they provide different van der Waals surfaces and electrostatic features. These differences likely contribute to the correct binding mode of the substrates, which are in opposite orientations in TR-II and TR-I, and to different reaction stereospecificities. The active site structure in the TR-II ternary complex also suggests that the arrangement of the substrate, cofactor, and catalytic residues is stereoelectronically favorable for the reaction.  相似文献   

14.
To determine the feasibility of direct X-ray crystallographic structure determination of productive enzyme-substrate complexes and to ascertain the best conditions for such studies, the hydrolysis of bacterial cell walls and oligosaccharides by human leukaemic lysozyme was investigated in mixed aqueous/organic solvents and high salt solutions. Although high salt solutions modify the enzymic reaction, hydrolysis in mixed solvents appears to proceed by the same mechanism as in aqueous solution. At low temperatures the reaction is slowed progressively, and at −25 °C the enzyme-substrate complex in mixed solvents is stable indefinitely. The conformation of the enzyme is not significantly altered in these solvents, and the enzyme-substrate complex can be formed by direct addition of substrate to the enzyme at sub-zero temperatures, as required for crystallographic studies. The pH profile of the reaction in mixed solvents allows conditions of optimal binding to be selected. These studies in solution demonstrate that low-temperature protein crystallography may indeed permit the direct determination of the three-dimensional structure of enzyme-substrate complexes. They also delineate the precise conditions of pH, temperature and solvent to use in the crystallographic experiments.  相似文献   

15.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open" (polymerase bound to gapped DNA) and "closed" (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit" mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.  相似文献   

16.
Using synchrotron radiation, the X-ray diffraction intensities of crystals of p-hydroxy-benzoate hydroxylase, complexed with the substrate p-hydroxybenzoate, were measured to a resolution of 1.9 A. Restrained least-squares refinement alternated with rebuilding in electron density maps yielded an atom model of the enzyme-substrate complex with a crystallographic R-factor of 15.6% for 31,148 reflections between 6.0 and 1.9 A. A total of 330 solvent molecules was located. In the final model, only three residues have deviating phi-psi angle combinations. One of them, the active site residue Arg44, has a well-defined electron density and may be strained to adopt this conformation for efficient catalysis. The mode of binding of FAD is distinctly different for the different components of the coenzyme. The adenine ring is engaged in three water-mediated hydrogen bonds with the protein, while making only one direct hydrogen bond with the enzyme. The pyrophosphate moiety makes five water-mediated versus three direct hydrogen bonds. The ribityl and ribose moieties make only direct hydrogen bonds, in all cases, except one, with side-chain atoms. The isoalloxazine ring also makes only direct hydrogen bonds, but virtually only with main-chain atoms. The conformation of FAD in p-hydroxybenzoate hydroxylase is strikingly similar to that in glutathione reductase, while the riboflavin-binding parts of these two enzymes have no structural similarity at all. The refined 1.9 A structure of the p-hydroxybenzoate hydroxylase-substrate complex was the basis of further refinement of the 2.3 A structure of the enzyme-product complex. The result was a final R-factor of 16.7% for 14,339 reflections between 6.0 and 2.3 A and an improved geometry. Comparison between the complexes indicated only small differences in the active site region, where the product molecule is rotated by 14 degrees compared with the substrate in the enzyme-substrate complex. During the refinements of the enzyme-substrate and enzyme-product complexes, the flavin ring was allowed to bend or twist by imposing planarity restraints on the benzene and pyrimidine ring, but not on the flavin ring as a whole. The observed angle between the benzene ring and the pyrimidine ring was 10 degrees for the enzyme-substrate complex and 19 degrees for the enzyme-product complex. Because of the high temperature factors of the flavin ring in the enzyme-product complex, the latter value should be treated with caution. Six out of eight peptide residues near the flavin ring are oriented with their nitrogen atom pointing towards the ring.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Thiamin phosphate synthase catalyzes the formation of thiamin phosphate from 4-amino-5-(hydroxymethyl)-2-methylpyrimidine pyrophosphate and 5-(hydroxyethyl)-4-methylthiazole phosphate. Several lines of evidence suggest that the reaction proceeds via a dissociative mechanism. The previously determined crystal structure of thiamin phosphate synthase in complex with the reaction products, thiamin phosphate and magnesium pyrophosphate, provided a view of the active site and suggested a number of additional experiments. We report here seven new crystal structures primarily involving crystals of S130A thiamin phosphate synthase soaked in solutions containing substrates or products. We prepared S130A thiamin phosphate synthase with the intent of characterizing the enzyme-substrate complex. Surprisingly, in three thiamin phosphate synthase structures, the active site density cannot be modeled as either substrates or products. For these structures, the best fit to the electron density is provided by a model that consists of independent pyrimidine, pyrophosphate, and thiazole phosphate fragments, consistent with a carbenium ion intermediate. The resulting carbenium ion is likely to be further stabilized by proton transfer from the pyrimidine amino group to the pyrophosphate to give the pyrimidine iminemethide, which we believe is the species that is observed in the crystal structures.  相似文献   

18.
Tropane alkaloids typically occur in the Solanaceae and are also found in Cochlearia officinalis, a member of the Brassicaceae. Tropinone reductases are key enzymes of tropane alkaloid metabolism. Two different tropinone reductases form one stereoisomeric product each, either tropine for esterified alkaloids or pseudotropine that is converted to calystegines. A cDNA sequence with similarity to known tropinone reductases (TR) was cloned from C. officinalis. The protein was expressed in Escherichia coli, and found to catalyze the reduction of tropinone. The enzyme is a member of the short-chain dehydrogenase enzyme family and shows broad substrate specificity. Several synthetic ketones were accepted as substrates, with higher affinity and faster enzymatic turnover than observed for tropinone. C. officinalis TR produced both the isomeric alcohols tropine and pseudotropine from tropinone using NADPH + H(+) as co-substrate. Tropinone reductases of the Solanaceae, in contrast, are strictly stereospecific and form one tropane alcohol only. The Arabidopsis thaliana homologue of C. officinalis TR showed high sequence similarity, but did not reduce tropinone. A tyrosine residue was identified in the active site of C. officinalis TR that appeared responsible for binding and orientation of tropinone. Mutagenesis of the tyrosine residue yielded an active reductase, but with complete loss of TR activity. Thus C. officinalis TR presents an example of an enzyme with relaxed substrate specificity, like short-chain dehydrogenases, that provides favorable preconditions for the evolution of novel functions in biosynthetic sequences.  相似文献   

19.
Lyle KS  Haas JA  Fox BG 《Biochemistry》2003,42(19):5857-5866
Stearoyl-ACP Delta9 desaturase (Delta9D) catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C9 and C10 positions of stearoyl-ACP (18:0-ACP) to produce oleoyl-ACP (18:1-ACP). This work revealed the ability of reduced [2Fe-2S] ferredoxin (Fd) to act as a catalytically competent electron donor during the rapid conversion of 18:0-ACP into 18:1-ACP. Experiments on the order of addition for substrate and reduced Fd showed high conversion of 18:0-ACP to 18:1-ACP (approximately 95% per Delta9D active site in a single turnover) when 18:0-ACP was added prior to reduced Fd. Reactions of the prereduced enzyme-substrate complex with O(2) and the oxidized enzyme-substrate complex with reduced Fd were studied by rapid-mix and chemical quench methods. For reaction of the prereduced enzyme-substrate complex, an exponential burst phase (k(burst) = 95 s(-1)) of product formation accounted for approximately 90% of the turnover expected for one subunit in the dimeric protein. This rapid phase was followed by a slower phase (k(linear) = 4.0 s(-1)) of product formation corresponding to the turnover expected from the second subunit. For reaction of the oxidized enzyme-substrate complex with excess reduced Fd, a slower, linear rate (k(obsd) = 3.4 s(-1)) of product formation was observed over approximately 1.5 turnovers per Delta9D active site potentially corresponding to a third phase of reaction. An analysis of the deuterium isotope effect on the two rapid-mix reaction sequences revealed only a modest effect on k(burst) ((D)k(burst) approximately 1.5) and k(linear) (D)k(linear) approximately 1.4), indicating C-H bond cleavage does not contribute significantly to the rate-limiting steps of pre-steady-state catalysis. These results were used to assemble and evaluate a minimal kinetic model for Delta9D catalysis.  相似文献   

20.
A theory is presented that describes the free energy difference between the enzyme-substrate (ES) and enzyme-product (EP) complexes that is expected in enzymes optimized for catalytic efficiency. In such enzymes, the free energy drop between ES and EP complexes reflects a portion of the chemical potential difference between substrates and products outside the active site under physiological conditions. Qualitative and quantitative predictions of the model are discussed and compared with experimental data. The controversy over the kinetically optimal free energy profile for an enzymatic reaction operating under constraints set forward by Albery & Knowles (1976) is resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号