首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(1):461-463
Quantum mechanical simulations of hydrogen abstraction by hydroxyl radical from methanol and ethanol yield barriers that agree very well with those measured experimentally. Analysis of the multi configurationally wave function indicates that the strength of the C-H bond is the electronic parameter that has a major contribution to the barrier for H-abstraction. Similar analysis applied to 2-deoxy-D-ribose shows that the strength of a C-H bond together with the steric accessibility of the hydrogen determine that H4 is the most susceptible hydrogen for abstraction by a hydroxyl radical. Quantum mechanical simulations of β-cleavage show that a concerted mechanism in which a water molecule assists in the bond breaking process is more likely than a Sin mechanism. However, the polar transition state suggests that the environment of the DNA and the surrounding water will have an important effect on the reaction.  相似文献   

2.
Whittaker MM  Whittaker JW 《Biochemistry》2001,40(24):7140-7148
Galactose oxidase is a remarkable enzyme containing a metalloradical redox cofactor capable of oxidizing a variety of primary alcohols during enzyme turnover. Recent studies using 1-O-methyl alpha-D-galactopyranoside have revealed an unusually large kinetic isotope effect (KIE) for oxidation of the alpha-deuterated alcohol (kH/kD = 22), demonstrating that cleavage of the 6,6'-di[2H]hydroxymethylene C-H bond is fully rate-limiting for oxidation of the canonical substrate. This step is believed to involve hydrogen atom transfer to the tyrosyl phenoxyl in a radical redox mechanism for catalysis [Whittaker, M. M., Ballou, D. P., and Whittaker, J. W. (1998) Biochemistry 37, 8426-8436]. In the work presented here, the enzyme's unusually broad substrate specificity has allowed us to extend these investigations to a homologous series of benzyl alcohol derivatives, in which remote (meta or para) substituents are used to systematically perturb the properties of the hydroxyl group undergoing oxidation. Quantitative structure-activity relationship (QSAR) correlations over the steady state rate data reveal a shift in the character of the transition state for substrate oxidation over this series, reflected in a change in the magnitude of the observed KIE for these reactions. The observed KIE values have been shown to obey a log-linear correlation over the substituent parameter, Hammett sigma. For the relatively difficult to oxidize nitro derivative, the KIE is large (kH/kD = 12.3), implying rate-limiting C-H bond cleavage for the oxidation reaction. This contribution becomes less important for more easily oxidized substrates (e.g., methoxy derivatives) where a much smaller KIE is observed (kH/kD = 3.6). Conversely, the solvent deuterium KIE is vanishingly small for 4-nitrobenzyl alcohol, but becomes significant for the 4-methoxy derivative (kH2O/kD2O = 1.2). These experiments have allowed us to develop a reaction profile for substrate oxidation by galactose oxidase, consisting of three components (hydroxylic proton transfer, electron transfer, and hydrogen atom transfer) comprising a single-step proton-coupled electron transfer mechanism. Each component exhibits a distinct substituent and isotope sensitivity, allowing them to be identified kinetically. The proton transfer component is unique in being sensitive to the isotopic character of the solvent (H2O or D2O), while hydrogen atom transfer (C-H bond cleavage) is independent of solvent composition but is sensitive to substrate labeling. In contrast, electron transfer processes will in general be less sensitive to isotopic substitution. Our results support a mechanism in which initial proton abstraction from a coordinated substrate activates the alcohol toward inner sphere electron transfer to the Cu(II) metal center in an unfavorable redox equilibrium, forming an alkoxy radical which undergoes hydrogen atom abstraction by the tyrosine-cysteine phenoxyl free radical ligand to form the product aldehyde.  相似文献   

3.
The direct ion-dipolar interactions between potassium ion (K(+)) and the two hydroxyl groups of the substrate are the most striking feature of the crystal structure of coenzyme B(12)-dependent diol dehydratase. We carried out density-functional-theory computations to determine whether K(+) can assist the 1,2-shift of the hydroxyl group in the substrate-derived radical. Between a stepwise abstraction/recombination reaction proceeding via a direct hydroxide abstraction by K(+) and a concerted hydroxyl group migration assisted by K(+), only a transition state for the latter concerted mechanism was found from our computations. The barrier height for the transition state from the complexed radical decreases by only 2.3 kcal/mol upon coordination of the migrating hydroxyl group to K(+), which corresponds to a 42-fold rate acceleration at 37 degrees C. The net binding energy upon replacement of the K(+)-bound water for substrate was calculated to be 10.7 kcal/mol. It can be considered that such a large binding energy is at least partly used for the substrate-induced conformational changes in the enzyme that trigger the homolytic cleavage of the Co-C bond of the coenzyme and the subsequent catalysis by a radical mechanism. We propose here a new mechanism for diol dehydratase in which K(+) plays a direct role in the catalysis.  相似文献   

4.
S M Miller  J P Klinman 《Biochemistry》1985,24(9):2114-2127
The chemical mechanism of hydroxylation, catalyzed by dopamine beta-monooxygenase, has been explored with a combination of secondary kinetic isotope effects and structure-reactivity correlations. Measurement of primary and secondary isotope effects on Vmax/Km under conditions where the intrinsic primary hydrogen isotope effect is known allows calculation of the corresponding intrinsic secondary isotope effect. By this method we have obtained an alpha-deuterium isotope effect, Dk alpha = 1.19 +/- 0.06, with dopamine as substrate. The beta-deuterium isotope effect is indistinguishable from one. The large magnitude of Dk alpha, together with our previous determination of a near maximal primary deuterium isotope effect of 9.4-11, clearly indicates the occurrence of a stepwise process for C-H bond cleavage and C-O bond formation and hence the presence of a substrate-derived intermediate. To probe the nature of this intermediate, a structure-reactivity study was performed by using a series of para-substituted phenylethylamines. Deuterium isotope effects on Vmax and Vmax/Km parameters were determined for all of the substrates, allowing calculation of the rate constants for C-H bond cleavage and product dissociation and dissociation constants for amine and O2 loss from the enzyme-substrate ternary complex. Multiple regression analysis yielded an electronic effect of p = -1.5 for the C-H bond cleavage step, eliminating the possibility of a carbanion intermediate. A negative p value is consistent with formation of either a radical or a carbocation; however, a significantly better correlation is obtained with sigma p rather than sigma p+, implying formation of a radical intermediate via a polarized transition state. Additional effects determined from the regression analyses include steric effects on rate constants for substrate hydroxylation and product release and on KDamine, consistent with a sterically restricted binding site, and a positive electronic effect of p = 1.4 on product dissociation, ascribed to a loss of product from an enzyme-bound Cu(II)-alkoxide complex. These results lead us to propose a mechanism in which O-O homolysis [from a putative Cu(II)-OOH species] and C-H homolysis (from substrate) occur in a concerted fashion, circumventing the formation of a discrete, high energy oxygen species such as hydroxyl radical. The substrate and peroxide-derived radical intermediates thus formed undergo a recombination, kinetically limited by displacement of an intervening water molecule, to give the postulated Cu(II)-alkoxide product complex.  相似文献   

5.
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.  相似文献   

6.
Abstract

While it is well established that classical hydrogen bonds play an important role in enzyme structure, function and dynamics, the role of weaker, but ‘activated’ C-H donor hydrogen bonds is poorly understood. The most important such case involves histidine which often plays a direct role in enzyme catalysis and possesses the most acidic C-H donor group of the standard amino acids. In the present study, we obtained optimized geometries and hydrogen bond interaction energies for C-H…O hydrogen bonded complexes between methane, ethylene, benzene, acetylene, and imidazole with water at the MP2-FC/6-31++G(2d,2p) and MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) levels of theory. A strong linear relationship is obtained between the stability of the various hydrogen bonded complexes and both separation distances for H…0 and C—O. In general, these calculations indicate that C-H…0 interactions can be classified as hydrogen bonding interactions, albeit significantly weaker than the classical hydrogen bonds, but significantly stronger than just van der Waals interactions. For instance, while the electronic energy of stabilization at the MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) level of theory of a water C-H…O water hydrogen bond is 4.36 kcal/mol more stable than the methane C-H…O water interaction, the water-water hydrogen bond is only 2.06 kcal/mol more stable than the imidazole Ce?H…O water hydrogen bond. Neglecting this latter hydrogen bonding interaction is obviously unacceptable. We next compare the potential energy surfaces for the imidazole Ce?H…O water and imidazole Nd?H…O hydrogen bonded complexes computed at the MP2/6-31++G(2d,2p) level of theory with the potential energy surface computed using the AMBER molecular mechanics program and forcefields. While the Weiner et al and Cornell et al AMBER forcefields reasonably account for the imidazole N-H…O water interaction, these forcefields do not adequately account for the imidazole Ce?H…O water hydrogen bond. A forcefield modification is offered that results in excellent agreement between the ab initio and molecular mechanics geometry and energy for this C-H…O hydrogen bonded complex.  相似文献   

7.
Resorcinols (pentadecylresorcinol, olivetol, orcinol and resorcinol) exhibit antioxidant properties in liposomal systems. Antioxidant potency depends on the length of the alkyl chain. Pentadecylresorcinol has been demonstrated to be the most active antioxidant, indicating significance of its alkyl chain in a lipid bilayer. Quantum DFT computations demonstrated that hydroxyl group attached to the ring is the first target for the hydrogen abstraction after formation of the radical. However, the carbons of the side chain could also participate in the antioxidant properties of the alkylresorcinols. Formation of the radical at the hydroxyl oxygen initiates changes in the electron density which destabilise the whole system and subsequently leads to oxidation of the ring. The detailed study of lipophilicity and electrostatic properties of resorcinols is discussed.  相似文献   

8.
Goshe MB  Chen YH  Anderson VE 《Biochemistry》2000,39(7):1761-1770
Hydroxyl radical-effected protium/deuterium ((1)H/(2)H) exchange into the C-H bonds present in peptides has been used to identify the site of hydrogen atom abstraction by hydroxyl radical. Radiolysis of anaerobic, N(2)O-saturated D(2)O solutions containing peptide and dithiothreitol generates a hydroxyl radical that mediates (1)H/(2)H exchange into the side chains of peptides of up to 66 atom % excess (2)H. The (1)H/(2)H exchange is determined by measuring the isotope ratio, [M + H + 1](+)/[M + H](+), of the peptide using electrospray ionization-mass spectrometry. The (1)H/(2)H exchange within each residue of the peptide was determined by measuring the isotope ratio of each isolated dansyl amino acid following hydrolysis and derivatization. Generation of 0.40 mM hydroxyl radical effected (1)H/(2)H exchange into each of the five different residues of (Ala(2))-leucine enkephalin (YAGFL). The propensity of the residues to undergo exchange was L > Y > A congruent with F > G, independent of whether they were radiolyzed separately or as the peptide. The minimal exchange into glycine suggests that reaction of hydroxyl radical with the side chain hydrogens predominates over reaction with the polypeptide alpha-hydrogens. The ability of radiolysis to effect (1)H/(2)H exchange into a larger peptide, SNEQKACKVLGI, was also demonstrated.  相似文献   

9.
The ionization properties of the active site residues in Drosophila lebanonensis alcohol dehydrogenase (DADH) were investigated theoretically by using an approach developed to account for multiple locations of the hydrogen atoms of the titratable and polar groups. The electrostatic calculations show that (a) the protonation/deprotonation transition of the binary complex of DADH is related to the coupled ionization of Tyr151 and Lys155 in the active site and (b) the pH dependence of the proton abstraction is correlated with a reorganization of the hydrogen bond network in the active site. On this basis, a proton relay mechanism for substrate dehydrogenation is proposed in which the O2' ribose hydroxyl group from the coenzyme has a key role and acts as a switch. The proton relay chain includes the active site catalytic residues, as well as a chain of eight water molecules that connects the active site with the bulk solvent.  相似文献   

10.
Glutathione is an immensely important antioxidant, particularly in the central nervous system. The scavenging mechanism of glutathione towards the OH radical was studied theoretically, considering its neutral, non-zwitterionic form relevant to acidic media. Gibbs free barrier and released energies involved in hydrogen abstraction from the different sites of glutathione by an OH radical were studied at the B3LYP/6-31G(d,p), B3LYP/AUG-cc-pVDZ, M06/AUG-cc-pVDZ, M06-2X/AUG-cc-pVDZ levels of density functional theory. Solvation in bulk aqueous media was also studied at all these levels of theory employing the polarizable continuum model. Our study shows that a hydroxyl radical can abstract a hydrogen atom easily from glutathione. Thus, glutathione is shown to be an efficient scavenger of OH radicals, which is in agreement with the results of previous studies.
Figure
Hydrogen abstraction (H10) from the most stable conformer of GSH I by a hydroxyl radical  相似文献   

11.
The gamma-glutamyl carboxylation reaction proceeds by an initial vitamin K-dependent gamma-C-H glutamyl bond cleavage and a subsequent carboxylation of the activated glutamyl residue. This system is easily uncoupled such that at low CO2 concentrations which limit the extent of carboxylation there is no effect on the rate of C-H bond cleavage. In an uncoupled system, the fate of activated glutamyl residues is to incorporate a hydrogen as demonstrated by the recovery of only unaltered glutamyl residues from digests of uncoupled reactions. In addition, in reactions carried out in tritiated, deuterated water mixtures, tritium is incorporated into the gamma positions of the glutamyl residues of peptide substrates in a vitamin K-dependent process, indicating that the hydrogen incorporated must ultimately come from solvent. These results, while not proof, put severe restraints on a radical mechanism while favoring a carbanion mechanism.  相似文献   

12.
The activity–structure relationships (ASR) of phenolic compounds as hydroxyl-radical scavengers have mostly been studied and discussed with regard to their iron-chelating and hydrogen-donation properties in Fenton-type system, but extensive elucidation of multiple mechanisms underlying the hydroxyl radical scavenging reaction is out of obtaining up to now. In the present paper, a series of phenolic compounds was studied for their reactivity with hydroxyl radical by computed chemistry and deoxyribose degradation assay. The rate constant (KS), an index dependent markedly on the reaction mechanism and intrinsic reactivity of antioxidants, was found to have good correlation with hydroxyl O–H bond strength (ΔHf), electron-donating ability (ionization potential approximated by HOMO energy level), enthalpy of single electron transfer (Ea), and spin distribution of phenoxyl radicals (Dsr) after H-abstraction. Moreover, the theoretical parameters were highly intercorrelated, suggesting that multiple mechanisms co-exist in the hydroxyl-radical-scavenging reaction and interact with each other. Multi-linear regression analysis indicated that, in addition to H-atom transfer, electron transfer process and stability of the resulted phenoxyl radicals also significantly influence the reactivity of quenching hydroxyl radicals. The QSAR model so established here was based on the elucidation of the complex molecular mechanisms, and may reasonably predict the antioxidant activity using simple experimental and calculated parameters.  相似文献   

13.
Hybrid density functional theory (DFT) calculations have been used to investigate different mechanisms for O–O bond splitting in cytochrome oxidase. It is shown that the requirement for a low activation barrier for the O–O bond splitting is that two protons, apart from the tyrosine hydroxyl proton, are available at the binuclear center. A mechanism is suggested for the transformation from a species with a molecularly coordinated O2, to an O–O cleaved species with an oxo-ferryl group. The mechanism has a calculated activation barrier in reasonable agreement with experimental estimates, and the overall reaction is close to thermoneutral, in line with the requirement that the energy wasted as heat should be minimized. The rate limiting step in the mechanism occurs at the initial Fe–O2 intermediate, consistent with experimental observations that the decay of the oxy intermediate parallels the increase of the oxo product. The formation of a radical at the cross-linked tyrosine–histidine structure is a possible source for one of the electrons required in the bond cleavage process. Possible sources for the two protons are discussed, including a suggested key role for the hydroxyl group on the farnesyl side chain of heme a3.  相似文献   

14.
Radical formation in single crystals of 1,3-dimethyluracil by X-irradiation has been studied by electron spin resonance at 9.5 GHz. This crystal contains no hydrogen bonds. Only Van der Waals forces are present. Accordingly, after X-irradiation at 300 K, the only radicals observed are those resulting from the excitation path: the H-addition radical at C5 and an H-abstraction radical from a methyl group. Irradiation with light of lambda more than 400 nm induces the transformation of the C5-addition into the C6-addition radical. INDO calculations indicate that the C6-addition radical is protonated at O4. Since this crystal does not contain N-H or O-H bonds, this protonation can only occur through proton-abstraction from a C-H bond of a neighbouring molecule by the carbonyl group. The presence of short contacts between C6 and O4 is taken to suggest that the abstraction occurs at C6.  相似文献   

15.
5, 6-Dihydropyrimidines can be oxidized photochemically to the original pyrimidines with light of lambda greater than 300 nm in the presence of transition metal salts which act as sensitizers. A hydrogen atom abstraction by hydroxyl radical is suggested as the reaction mechanism.  相似文献   

16.
Oxygen activation occurs at a wide variety of enzyme active sites. Mechanisms previously proposed for the copper monooxygenase, dopamine beta-monooxygenase (DbetaM), involve the accumulation of an activated oxygen intermediate with the properties of a copper-peroxo or copper-oxo species before substrate activation. These are reminiscent of the mechanism of cytochrome P-450, where a heme iron stabilizes the activated O2 species. Herein, we report two experimental probes of the activated oxygen species in DbetaM. First, we have synthesized the substrate analog, beta,beta-difluorophenethylamine, and examined its capacity to induce reoxidation of the prereduced copper sites of DbetaM upon mixing with O2 under rapid freeze-quench conditions. This experiment fails to give rise to an EPR-detectable copper species, in contrast to a substrate with a C-H active bond. This indicates either that the reoxidation of the enzyme-bound copper sites in the presence of O2 is tightly linked to C-H activation or that a diamagnetic species Cu(II)-O2* has been formed. In the context of the open and fully solvent-accessible active site for the homologous peptidylglycine-alpha-hydroxylating monooxygenase and by analogy to cytochrome P-450, the accumulation of a reduced and activated oxygen species in DbetaM before C-H cleavage would be expected to give some uncoupling of oxygen and substrate consumption. We have, therefore, examined the degree to which O2 and substrate consumption are coupled in DbetaM using both end point and initial rate experimental protocols. With substrates that differ by more than three orders of magnitude in rate, we fail to detect any uncoupling of O2 uptake from product formation. We conclude that there is no accumulation of an activated form of O2 before C-H abstraction in the DbetaM and peptidylglycine-alpha-hydroxylating monooxygenase class of copper monooxygenases, presenting a mechanism in which a diamagnetic Cu(II)-superoxo complex, formed initially at very low levels, abstracts a hydrogen atom from substrate to generate Cu(II)-hydroperoxo and substrate-free radical as intermediates. Subsequent participation of the second copper site per subunit completes the reaction cycle, generating hydroxylated product and water.  相似文献   

17.
Titanium dioxide (TiO2) is a potential photosensitizer for photodynamic therapy. In this study, the mechanism of DNA damage catalyzed by photo-irradiated TiO2 was examined using [32P]-5'-end-labeled DNA fragments obtained from human genes. Photo-irradiated TiO2 (anatase and rutile) caused DNA cleavage frequently at the guanine residue in the presence of Cu(II) after E. coli formamidopyrimidine-DNA glycosylase treatment, and the thymine residue was also cleaved after piperidine treatment. Catalase, SOD and bathocuproine, a chelator of Cu(I), inhibited the DNA damage, suggesting the involvement of hydrogen peroxide, superoxide and Cu(I). The photocatalytic generation of Cu(I) from Cu(II) was decreased by the addition of SOD. These findings suggest that the inhibitory effect of SOD on DNA damage is due to the inhibition of the reduction of Cu(II) by superoxide. We also measured the formation of 8-oxo-7,8-dihydro-2' -deoxyguanosine, an indicator of oxidative DNA damage, and showed that anatase is more active than rutile. On the other hand, high concentration of anatase caused DNA damage in the absence of Cu(II). Typical free hydroxyl radical scavengers, such as ethanol, mannnitol, sodium formate and DMSO, inhibited the copper-independent DNA photodamage by anatase. In conclusion, photo-irradiated TiO2 particles catalyze the copper-mediated site-specific DNA damage via the formation of hydrogen peroxide rather than that of a free hydroxyl radical. This DNA-damaging mechanism may participate in the phototoxicity of TiO2.  相似文献   

18.
B12-dependent methylmalonyl-CoA mutase catalyses the interchange of a hydrogen atom and the carbonyl-CoA group on adjacent carbons of methylmalonyl-CoA to give the rearranged product, succinyl-CoA. The first step in this reaction involves the transient generation of cofactor radicals by homolytic rupture of the cobalt-carbon bond to generate the deoxyadenosyl radical and cob(II)alamin. This step exhibits a curious sensitivity to isotopic substitution in the substrate, methylmalonyl-CoA, which has been interpreted as evidence for kinetic coupling. The magnitude of the isotopic discrimination is large and a deuterium isotope effect ranging from 35.6 at 20 degrees C to 49.9 at 5 degrees C has been recorded. Arrhenius analysis of the temperature dependence of this isotope effect provides evidence for quantum tunnelling in this hydrogen transfer step. The mechanistic complexity of the observed rate constant for cobalt-carbon bond homolysis together with the spectroscopically silent nature of many of the component steps limits the insights that can be derived by experimental approaches alone. Computational studies using a newly developed geometry optimization scheme that allows determination of the transition state in the full quantum mechanical/molecular mechanical coordinate space have yielded novel insights into the strategy deployed for labilizing the cobalt-carbon bond and poising the resulting deoxyadenosyl radical for subsequent hydrogen atom abstraction.  相似文献   

19.
Quantum yields for the photoinduced release of seven different commonly used leaving groups (LGs) from the o-nitroveratryl protecting group were measured. It was found that these quantum yields depend strongly on the nature of the LGs. We show that the quantum efficiency with which the LGs are released correlates with the stabilization that these LGs provide to o-nitrobenzyl-type radicals because radical stabilizing groups weaken the C-H bond that is cleaved in the photoinduced hydrogen atom transfer step, and hence lower the barrier for this process. At the same time these substituents lower the endothermicity of the thermal hydrogen atom transfer and thus increase the barrier for the reverse process, thereby enhancing the part of the initially formed aci-nitro intermediates which undergo cyclization (which ultimately leads to LG release). Radical stabilization energies computed by DFT methods are thus a useful predictor of the relative efficiency with which LGs are photoreleased from o-nitrobenzyl protecting groups.  相似文献   

20.
Experiments on cryptically chiral ethanes have indicated that the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) catalyzes the hydroxylation of ethane with total retention of configuration at the carbon center attacked. This result would seem to rule out a radical mechanism for the hydroxylation chemistry, at least as mediated by this enzyme. The interpretation of subsequent experiments on n-propane, n-butane, and n-pentane has been complicated by hydroxylation at both the pro-R and pro-S secondary C-H bonds, where the hydroxylation takes place. It has been suggested that these results merely reflect presentation of both the pro-R and pro-S C-H bonds to the hot "oxygen atom" species generated at the active site, and that the oxo-transfer chemistry, in fact, proceeds concertedly with retention of configuration. In the present work, we have augmented these earlier studies with experiments on [2,2-2H2]butane and designed d,l form chiral dideuteriobutanes. Essentially equal amounts of (2R)-[3,3-2H2]butan-2-ol and (2R)-[2-2H1]butan-2-ol are produced upon hydroxylation of [2,2-2H2]butane. The chemistry is stereospecific with full retention of configuration at the secondary carbon oxidized. In the case of the various chiral deuterated butanes, the extent of configurational inversion has been shown to be negligible for all the chiral butanes examined. Thus, the hydroxylation of butane takes place with full retention of configuration in butane as well as in the case of ethane. These results are interpreted in terms of an oxo-transfer mechanism based on side-on singlet oxene insertion across the C-H bond similar to that previously noted for singlet carbene insertion (Kirmse, W., and Ozkir, I. S. (1992) J. Am. Chem. Soc. 114, 7590-7591). Finally, we discuss how even the oxene insertion mechanism, with "spin crossover" in the transition state, could lead to small amounts of radical rearrangement products, if and when such products are observed. A scheme is described that unifies the two extreme mechanistic limits, namely the concerted oxene insertion and the hydrogen abstraction radical rebound mechanism within the same over-arching framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号