首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
As part of an ongoing project to substantially increase knowledge of the marine algal flora of the French Pacific territory of New Caledonia, a survey of the Nouméa region was conducted that has resulted in the discovery of 41 previously unrecorded species of macroalgae, including 1 Chlorophyta, 1 Phaeophyceae (Heterokontophyta) and 39 Rhodophyta. Among the biogeographically interesting new records are the green macroalga Rhipilia penicilloides N’Yeurt et Keats (previously endemic to the islands of Fiji some 1000 km east of new Caledonia) and the brown alga Cutleria mollis Allender et Kraft (originally described from Lord Howe Island some 1000 km to the south). The red alga Gloiophloea articulata Weber‐van Bosse, known only from its initial discovery in 1928 from the Mascarene Islands in the western Indian Ocean, is now recorded in the deep‐water channels of the Nouméa region of New Caledonia. The widely distributed Indian Ocean species Corynomorpha prismatica (J. Agardh) J. Agardh has its easternmost distribution record from this area, and Dotyella hawaiiensis (Doty et Wainwright) Womersley et Shepley is recorded for the first time outside its central‐Pacific distribution. These new discoveries represent a 12% increase in the total number of species (377) that are reliably known from New Caledonia.  相似文献   

2.
The ultrastructure, morphology and life cycle of a new chlorarachniophyte alga collected from Okinawa in Japan have been studied. The life cycle of this alga consists of amoeboid, wall‐less round, coccoid and flagellated cells in culture condition; however, the coccoid and flagellate cells are very rare. The pyrenoid ultra‐structure of this alga is the same as that of a previously described species, Lotharella globosa. Since pyrenoid ultrastructure has been adopted as the main criterion for the generic classification of the chlorarachniophytes, the present alga is placed in Lotharella. However, the present alga has a dominant amoeboid cell stage and a reduced walled‐cell stage in the life cycle, while in L. globosa, the walled‐cell stage is dominant and there is no amoeboid cell stage. Therefore the present alga is described as a new species of Lotharella: Lotharella amoeboformis Ishida et Y. Hara sp. nov.  相似文献   

3.
A new aerial alga, Stichococcus ampulliformis S. Handa sp. nov. (Trebouxiophyceae, Chlorophyta) is described based on a clone isolated from the bark of Cephalotaxus harringtonia (Knight ex Forbes) K. Koch collected from Taishaku‐kyo Gorge, Hiroshima Prefecture, south‐west Japan. This alga was examined by light microscopy and transmission electron microscopy and subjected to molecular phylogenetic analysis. Based on its morphological features and life‐cycle, especially short filament formation, the alga was assigned to the genus Stichococcus Nägeli. However, this alga differs from other described Stichococcus species in that it reproduces by a form of ‘budding’, producing two daughter cells of different sizes. The larger cell, enclosed within the mother cell wall, soon reaches the size of a normal vegetative cell. The smaller cell is extruded and takes longer to reach full vegetative size. A phylogenetic tree constructed using 18S rRNA sequences indicated that, within the Trebouxiophyceae, S. ampulliformis is closely related to S. bacillaris Nägeli and some species of Prasiola Meneghini.  相似文献   

4.
A new species of chlorarachniophyte alga, Lotharella vacuolata Ota et Ishida sp. nov., is described. This alga has been maintained as strain CCMP240 at the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton at Bigelow Laboratory for Ocean Sciences. We examined in detail its morphology, ultrastructure and life cycle, using light microscopy, transmission electron microscopy and time‐lapse videomicroscopy. The dominant stage in the life cycle was represented by coccoid cells; however, amoeboid and flagellated stages were also observed. This alga showed unique post‐cell division behavior: one of the two daughter cells became amoeboid and escaped through a pore on the parental cell wall; the other daughter cell remained within the parental cell wall. Pyrenoid ultrastructure and nucleomorph location, which are used as the main generic criteria of chlorarachniophytes, confirmed that the strain CCMP240 is a member of Lotharella. This alga, however, was clearly distinguished from other known Lotharella species by the presence of large vacuoles, unusual post‐cell division behavior and some unique ultrastructural characters.  相似文献   

5.
The marine red alga Peyssonnelia rumoiana Kato et Masuda, sp. nov. (Peyssonneliaceae, Gigartinales) is described from warm‐ and cold‐temperate regions in Japan. It is principally characterized by having hypo‐thallial filaments comprising a polyflabelate layer, proximal perithallial cells arising from the whole upper surface of each hypothallial cell (Peyssonnelia rubra‐type anatomy) and closely packed in a firm matrix, the production of two filaments from the proximal perithallial cell, unicellular rhizoids, appressed crust margins and hypobasal calcification. The alga is distinguished from related species by: (i) its conspicuously elevated cystocarpic (100–150 μm high) and tetrasporangial (80–110 μm high) nemathecia; (ii) tetrasporangia with or without a unicellular pedicel; and (iii) large (25–45 μm in diameter by 70–115 μm in length) tetrasporangia and (iv) the production of double chains of spermatangia (Peyssonnelia harveyana‐type spermatangial development).  相似文献   

6.
An enigmatic acrochaetioid alga was collected from Niangziguan spring in Shanxi Province, northern China. Morphological data indicated that this alga reproduces exclusively asexually by monosporangia and its morphological characteristics suggested that it might be referred to Audouinella heterospora. To ascertain its phylogenetic position, phylogenetic trees were reconstructed using partial sequences of the plastid‐encoded gene (rbcL) and the nuclear‐encoded gene (SSU rDNA) applying Bayesian inference (BI), maximum parsimony (MP) and maximum likelihood (ML). However, phylogenetic reconstructions showed that this acrochaetioid alga does not belong in a clade with the genus Audouinella, but forms a clade with Thorea hispida (Thoreales). Based on this analysis it is concluded that A. heterospora represents the ‘chantransia’ stage of T. hispida.  相似文献   

7.
A non-pigmented, unicellular alga isolated from the faeces of British anuran tadpoles and which is associated with growth inhibition in these tadpoles, was described and identified using cytological, ultrastructural, nutrient assimilation and immunological studies. The alga possessed all the distinctive morphological features of the genus Prototheca, it grew weakly on Prototheca Isolation Medium (PIM), it required thiamine for continued growth and replication, and it could assimilate the five major substrates used to speciate the protothecans. All of these characteristics, together with previous nucleic acid hybridisation studies, indicated that the microorganism belonged to the genus Prototheca. There are currently five species recognised as valid (Pore, 1985 & 1986): Prototheca zopfii Kruger, 1884, P. wickerhamii Tubaki & Soneda, 1959, P. moriformis Kruger, 1884, P. stagnora Cooke, 1968 and P. ulmea Pore, 1986.The immunology showed that the new species was related to two of the protothecans, but overall it showed that the alga was antigenically distinct from the other protothecans tested in the immunoassay. This, together with its inability to grow strongly on PIM, its ability to assimilate a wide rage of carbon substrates and its ability to mediate growth inhibition in anuran tadpoles, indicated a new species of Prototheca. We therefore propose the name Prototheca richardsi sp. n.  相似文献   

8.
Nagao M  Uemura M 《Planta》2012,235(4):851-861
Previously, it was reported that like land plants, the green alga Klebsormidium flaccidum (Streptophyta) accumulates sucrose during cold acclimation (Nagao et al. Plant Cell Environ 31:872–885, 2008), suggesting that synthesis of sucrose could enhance the freezing tolerance of this alga. Because sucrose phosphate phosphatase (SPP; EC 3.1.3.24) is a key enzyme in the sucrose synthesis pathway in plants, we analyzed the SPP gene in K. flaccidum (KfSPP, GenBank accession number AB669024) to clarify its role in sucrose accumulation. As determined from its deduced amino acid sequence, KfSPP contains the N-terminal domain that is characteristic of the L-2-haloacid-dehalogenase family of phosphatases/hydrolases (the HAD phosphatase domain). However, it lacks the extensive C-terminal domain found in SPPs of land plants. Database searches revealed that the SPPs in cyanobacteria also lack the C-terminal domain. In addition, the green alga Coccomyxa (Chlorophyta) and K. flaccidum, which are closely related to land plants, have cyanobacterial-type SPPs, while Chlorella (Chlorophyta) has a land plant-type SPP. These results demonstrate that even K. flaccidum (Streptophyta), as a recent ancestor of land plants, has the cyanobacterial-type SPP lacking the C-terminal domain. Because SPP and sucrose phosphate synthase (SPS) catalyze sequential reactions in sucrose synthesis in green plant cells and the lack of the C-terminal domain in KfSPP is predicted to decrease its activity, the interaction between decreased KfSPP activity and SPS activity may alter sucrose synthesis during cold acclimation in K. flaccidum.  相似文献   

9.
10.
A new habitat and a new chlorophyll (Chl) d‐containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d‐containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato‐phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)‐based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near‐infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%–2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d‐containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure.  相似文献   

11.
Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin‐supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro‐fluorometric analysis of Nile red‐stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α‐linolenic acid, an essential omega‐3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long‐term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae.  相似文献   

12.
The processes of CO2 acquisition were characterized for the acid‐tolerant, free‐living chlorophyte alga, CPCC 508. rDNA data indicate an affiliation to the genus Coccomyxa, but distinct from other known members of the genus. The alga grows over a wide range of pH from 3.0 to 9.0. External carbonic anhydrase (CA) was detected in cells grown above pH 5, with the activity increasing marginally from pH 7 to 9, but most of the CA activity was internal. The capacity for HCO3? uptake of cells treated with the CA inhibitor acetazolamide (AZA), was investigated by comparing the calculated rate of uncatalyzed CO2 formation with the rate of photosynthesis. Active bicarbonate transport occurred in cells grown in media above pH 7.0. Monitoring CO2 uptake and O2 evolution by membrane‐inlet mass spectrometry demonstrated that air‐grown cells reduced the CO2 concentration in the medium to an equilibrium concentration of 15 μM, but AZA‐treated cells caused a drop in extracellular CO2 concentration to a compensation concentration of 27 μM at pH 8.0. CO2‐pulsing experiments with cells in the light indicated that the cells do not actively take up CO2. An internal pool of unfixed inorganic carbon was not detected at the CO2 compensation concentration, probably because of the lack of active CO2 uptake, but was detectable at times before compensation point was reached. These results indicate that this free‐living Coccomyxa possesses a CO2‐concentrating mechanism (CCM) due to an active bicarbonate‐uptake system, unlike the Coccomyxa sp. occurring in symbiotic association with lichens.  相似文献   

13.
A new species of a chlorarachniophyte alga, Bigelowiella longifila sp. nov., is described. It is classified as a member of Bigelowiella as flagellate cells constitute the main stage of the life cycle. However, this alga is different from the only described species of the genus, B. natans Moestrup, in having a unique amoeboid stage in the life cycle. We observed an interesting behavior of amoeboid daughter cells after cell division: One of the two daughter cells inherits the long filopodium of the parental cell, and it subsequently transports its cell contents through the filopodium to develop at its opposite end. The other daughter cell forms a new filopodium. This unequal behavior of daughter cells may have evolved before the chlorarachniophytes and some colorless cercozoans diverged.  相似文献   

14.
Species in genus Nannochloropsis are promising candidates for both biofuel and biomass production due to their ability to accumulate rich fatty acids and grow fast; however, their sexual reproduction has not been studied. It is clear that the construction of their metabolic pathways, such as that of polyunsaturated fatty acid (PUFA) biosynthesis, and understanding of their biological characteristics, such as nuclear ploidy and reproductive strategy, will certainly facilitate their genetic improvement through gene engineering and mutation and clonal expansion. In this study, the genome of N. oceanica S. Suda et Miyashita was sequenced with the next‐generation Illumina GA sequencing technologies. The genome was ~30 Mb in size, which contained 11,129 protein‐encoding genes. Of them, 59.65% were annotated by aligning with those in diverse protein databases, and 29.68% were assigned at least one function described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Less frequent polymorphic nucleotides (one in 22.06 kb) and the obvious deviation from 1:1 (major:minor, minor ≥10) expectation indicated the nuclear monoploidy of N. oceanica. The lack of the majority of meiosis‐specific proteins implied the asexual reproduction of this alga. In combination, the nuclear monoploidy and asexual propagation led us to favor the hypothesis that N. oceanica was a premeiotic or ameiotic alga. In addition, sequence similarity‐based searching identified the elongase‐ and desaturase‐encoding genes involved in the biosynthesis of long‐chain PUFAs, which provided the genetic basis of its rich content of eicosapentaenoic acid (EPA). The functional genes and their metabolic pathways profiled against its genome sequence will facilitate its integrative investigations.  相似文献   

15.
An encrusting brown alga from subtidal habitats around the island of Oahu (Hawaiian Islands) represents only the second genus of the class Phaeophyceae to form calcium carbonate, which it deposits primarily as both extracellular and intracellular aragonite, admixed with small (3.3%) amounts of calcite. Plants form expanses 15–100+ cm in extent consisting of horizontally aligned imbricating tiers of distromatic blades 1–4 mm in diameter that are separated from one another by cementing layers of extracellular aragonite, the tiers forming stacks of dozens of laminae and anchored to coral substrata by a basement layer that adheres tightly without haptera or rhizoids. The hypodermal layer of each blade consists of lightly pigmented rectilinear cells bearing either one or two smaller deeply pigmented epidermal cells in cross‐sectional profiles and three or four in long‐sectional profiles, the cells of both layers becoming encased in rigid carbonate skeletons laid down in their outer wall matrices. The successive tiers become stacked by either overgrowing marginal proliferations or new blade primordia that arise from the hypodermal layer of surface laminae and initially spread centrifugally by means of continuous marginal meristems. Neither plurilocular nor unilocular reproductive structures are known. The alga is described as the new genus and species Newhousia imbricata Kraft, G.W. Saunders, Abbott et Haroun and is assigned on the basis of small subunit rDNA gene sequence analyses to the order Dictyotales, family Dictyotaceae, within a strongly supported monophyletic clade that includes Distromium, Lobophora, and Zonaria.  相似文献   

16.
The paper describes the morphology and reproduction of a new species of Symphyonemopsis viz. S. pantii n. sp. isolated from enrichment cultures of a soil sample collected from the campus of Sangeet Samiti, Allahabad (India). Thalli grow as dark blue-green, small, wooly patches on soil surface but as cushion-like growths on agar plates. It has a prostrate and erect system. The latter bears secondary branches of almost equal breadth. It possesses both false and true branches. Usually true branches are reverse V-shaped. The alga shows formation of hormocysts and akinetes. In old cultures usually the main filament becomes multiseriate. The crescent-shaped stages of hormocysts are also present here. Cells of the present alga are constricted at the cross-walls On comparison it was found to come close to Symphyonemopsis katniensis Tiwari et Mitra but differs in certain fundamental characters. It is, therefore, described as a new species viz. S. pantii n. sp. (Cyanophyta, Stigonematales, Mastigocladaceae).  相似文献   

17.
Vegetative and reproductive structures of the little‐known red alga, Meristotheca coacta Okamura (Solieriaceae, Gigartinales) were described on the basis of specimens collected from three localities in southern Japan, including an island close to the lectotype locality. Meristotheca coacta was shown to be a strongly supported monophyletic clade in our rbcL analyses. The taxonomic features of this species were reassessed. This species is characterized as follows: (i) the thalli consist of relatively thick (300–1400 μm from the uppermost to basal regions), elastic and rose‐red blades; (ii) the blades are irregularly lobed and branched into variously shaped segments with undulate and crispate margins; (iii) tetrasporangial initials are laterally attached to their parental cells and the lateral pit‐connections remain in mature tetrasporangia; (iv) gametophytes are dioecious; (v) carpogonial branches are three‐celled (occasionally two‐ or four‐celled); (vi) a darkly staining auxiliary cell complex is present and recognizable prior to diploidization; and (vii) cystocarps are produced along (or near) the margins of the blades and on the marginal proliferations and lack spinous outgrowths.  相似文献   

18.
Synchroma grande (Synchromophyceae, Heterokontophyta) is a marine amoeboid alga, which was isolated from a benthic habitat. This species has sessile cell stages (amoeboid cells with lorica and cysts) and non‐sessile cell stages (migrating and floating amoebae) during its life cycle. The different cell types and their transitions within the life cycle are described, as are their putative functions. Cell proliferation was observed only in cells attached to the substrate but not in free‐floating or migrating cells. We also characterised the phagotrophy of the meroplasmodium in comparison to other amoeboid algae and the formation of the lorica. The functional adaptations of S. grande during its life cycle were compared to the cell stages of other amoeboid algae of the red and green chloroplast lineages. S. grande was found to be highly adapted to the benthic habitat. One sexual and two asexual reproductive strategies (haplo‐diploid life cycle) support the ability of this species to achieve rapid diversification and high adaptivity in its natural habitat.  相似文献   

19.
A new species of paedomorphic gobioid, Schindleria elongata, from the Red Sea, is described on the basis of five specimens. The new species is characterized by its lack of body pigmentation; the body depth at pectoral‐fin origin 4–5% of standard length (LS) and at anal‐fin origin 5–7% LS; the predorsal length 66–70% LS; pre‐anal length 66–71% LS; dorsal‐fin rays 13 or 14; anal‐fin rays 10 or 11; first dorsal‐fin ray at myomere 20 or 21; first anal‐fin ray below second to fourth dorsal‐fin rays; myomeres 19 or 20 + 13 or 14 = 33 or 34 total; premaxillae and dentaries with small teeth; gas bladder located posteriorly at 56–60% LS; males with a rod‐like, flexible urogenital papilla lacking lobes, projections or accessory papillae, with distal half tapering to a broad, angular point and usually posteriorly directed. A key to the species of Schindleriidae is presented.  相似文献   

20.
A new species of red alga, Sebdenia cerebriformis N'Yeurt et Payri sp. nov. (Sebdeniaceae, Sebdeniales), is described from various localities in the south and western Pacific including Fiji, New Caledonia, the Solomon Islands, Vanuatu, and Indonesia (Java Sea). The new species is characterized by a ruffled thallus with multiple perennial stipitate holdfasts, large conspicuous inner cortical stellate cells, and a lax filamentous medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号