首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Human apolipoprotein A-1 (apo A-1) is the major protein component of high-density lipoproteins. The apo A-1 lipid-binding domain was used as a template for the synthesis of amphipathic helical proteins termed membrane scaffold proteins, employed to self-assemble soluble monodisperse discoidal particles called Nanodiscs. In these particles, membrane scaffold proteins surround a lipid bilayer in a belt-like fashion forming bilayer disks of discrete size and composition. Here we investigate the structure of Nanodiscs through molecular dynamics simulations in which Nanodiscs were built from scaffold proteins of various lengths. The simulations showed planar or deformed Nanodiscs depending on optimal length and alignment of the scaffold proteins. Based on mean surface area per lipid calculations, comparison of small-angle x-ray scattering curves, and the relatively planar shape of Nanodiscs made from truncated scaffold proteins, one can conclude that the first 17 to 18 residues of the 200-residue apo A-1 lipid-binding domain are not involved in formation of the protein "belts" surrounding the lipid bilayer. To determine whether the addition of an integral membrane protein has an effect on the overall structure of a Nanodisc, bacteriorhodopsin was embedded into a Nanodisc and simulated using molecular dynamics, revealing a planar disk with a slightly rectangular shape.  相似文献   

2.
Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.  相似文献   

3.
Nanodiscs, phospholipid bilayer assemblies of controlled size, were used to self-assemble bacteriorhodopsin (bR) into single trimers. Self-assembly at optimal bR to Nanodisc and phospholipid stoichiometry yielded particles containing three bR molecules. Analysis of solution small angle X-ray scattering indicated that bacteriorhodopsin is embedded in a discoidal phospholipid bilayer structure. Formation of trimers, as evidenced by visible circular dichroism of the retinal absorbance bands, is facilitated in Nanodiscs at a specific size threshold, suggesting that a critical bilayer area or amount of lipid is necessary to maintain a native oligomeric state. The lipid to bR ratio in the assembly process was also found to be an important factor in determining oligomerization state. These nanoscale bilayers offer the opportunity to understand and control the assembly of oligomeric integral membrane proteins critical to macromolecular recognition and cellular signaling.  相似文献   

4.
Civjan NR  Bayburt TH  Schuler MA  Sligar SG 《BioTechniques》2003,35(3):556-60, 562-3
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography. We show that formation of these Nanodiscs from insect cell membranes allows for the compartmentalization into soluble nanostructures that provide a natural membrane bilayer that avoids the aggregation of membrane proteins often encountered in other reconstitution procedures. Lipid composition analysis and substrate binding analysis of size-fractionated Nanodiscs arrayed in microtiter plates further demonstrates that the Nanodisc system effectively disperses the overexpressed membrane protein into monodispersed bilayers containing biochemically defined lipid components and the target protein in its native from suitable for sensitive high-throughput substrate binding analysis.  相似文献   

5.
Yan R  Mo X  Paredes AM  Dai K  Lanza F  Cruz MA  Li R 《Biochemistry》2011,50(49):10598-10606
The glycoprotein Ib-IX (GPIb-IX) complex expressed on platelet plasma membrane is involved in thrombosis and hemostasis via the initiation of adhesion of platelets to von Willebrand factor (VWF) exposed at the injured vessel wall. While most of the knowledge of the GPIb-IX complex was obtained from studies on platelets and transfected mammalian cells expressing the GPIb-IX complex, there is not an in vitro membrane system that allows systematic analysis of this receptor. The phospholipid bilayer Nanodisc composed of a patch of phospholipid surrounded by membrane scaffold protein is an attractive tool for membrane protein study. We show here that the GPIb-IX complex purified from human platelets has been reconstituted into the Nanodisc. The Nanodisc-reconstituted GPIb-IX complex was able to bind various conformation-sensitive monoclonal antibodies. Furthermore, it bound to VWF in the presence of botrocetin with an apparent K(d) of 0.73 ± 0.07 nM. The binding to VWF was inhibited by anti-GPIbα antibodies with epitopes overlapping with the VWF-binding site, but not by anti-GPIbβ monoclonal antibody RAM.1. Finally, the Nanodisc-reconstituted GPIb-IX complex exhibited ligand binding activity similar to that of the isolated extracellular domain of GPIbα. In conclusion, the GPIb-IX complex in Nanodiscs adopts a native-like conformation and possesses the ability to bind its natural ligands, thus making a Nanodisc a suitable in vitro platform for further investigation of this hemostatically important receptor complex.  相似文献   

6.
Leitz AJ  Bayburt TH  Barnakov AN  Springer BA  Sligar SG 《BioTechniques》2006,40(5):601-2, 604, 606, passim
Integral membrane G protein-coupled receptors (GPCRs) compose the single most prolific class of drug targets, yet significant functional and structural questions remain unanswered for this superfamily. A primary reason for this gap in understanding arises from the difficulty of forming soluble, monodisperse receptor membrane preparations that maintain the transmembrane signaling activity of the receptor and provide robust biophysical and biochemical assay systems. Here we report a technique for self-assembling functional beta2-adrenergic receptor (beta2AR) into a nanoscale phospholipid bilayer system (Nanodisc) that is highly soluble in aqueous solution. The approximately 10-nm nanobilayer particles contain beta2AR in a native-like phospholipid bilayer domain of approximately 100 phospholipid molecules circumferentially bound by a membrane scaffold protein (MSP). The resulting construct allows for access to the physiologically intracellular and extracellular faces of the receptor and thus allows unrestricted access of antagonists, agonists, and G proteins. These Nanodisc-solubilized GPCRs can be directly purified by normal chromatographic procedures. We define the resultant Nanodisc-embedded monomeric beta2AR by antagonist and agonist binding isotherms and demonstrate faithful G protein coupling.  相似文献   

7.
Timothy H. Bayburt 《FEBS letters》2010,584(9):1721-14316
Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function. We provide an overview of the Nanodisc approach and document through several examples many of the applications to the study of the structure and function of integral membrane proteins.  相似文献   

8.
Shaw AW  McLean MA  Sligar SG 《FEBS letters》2004,556(1-3):260-264
Nanoscale protein supported phospholipid bilayer discs, or Nanodiscs, were produced for the purpose of studying the phase transition behavior of the incorporated lipids. Nanodiscs and vesicles were prepared with two phospholipids, dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, and the phase transition of each was analyzed using laurdan fluorescence and differential scanning calorimetry. Laurdan is a fluorescent probe sensitive to the increase of hydration in the lipid bilayer that accompanies the gel to liquid crystalline phase transition. The emission intensity profile can be used to derive the generalized polarization, a measure of the relative amount of each phase present. Differential scanning calorimetry was used to further quantitate the phase transition of the phospholipids. Both methods revealed broader transitions for the lipids in Nanodiscs compared to those in vesicles. Also, the transition midpoint was shifted 3-4 degrees C higher for both lipids when incorporated into Nanodiscs. These findings are explained by a loss of cooperativity in the lipids of Nanodiscs which is attributable to the small size of the Nanodiscs as well as the interaction of boundary lipids with the protein encircling the discs. The broad transition of the Nanodisc lipid bilayer better mimics the phase behavior of cellular membranes than vesicles, making Nanodiscs a 'native-like' lipid environment in which to study membrane associated proteins.  相似文献   

9.
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of “membrane scaffold protein.” Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.  相似文献   

10.
Nath A  Atkins WM  Sligar SG 《Biochemistry》2007,46(8):2059-2069
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.  相似文献   

11.
Kijac AZ  Li Y  Sligar SG  Rienstra CM 《Biochemistry》2007,46(48):13696-13703
Cytochrome P450 (CYP) 3A4 contributes to the metabolism of approximately 50% of commercial drugs by oxidizing a large number of structurally diverse substrates. Like other endoplasmic reticulum-localized P450s, CYP3A4 contains a membrane-anchoring N-terminal helix and a significant number of hydrophobic domains, important for the interaction between CYP3A4 and the membrane. Although the membrane affects specificity of CYP3A4 ligand binding, the structural details of the interaction have not been revealed so far because X-ray crystallography studies are available only for the soluble domain of CYP3A4. Here we report sample preparation and initial magic-angle spinning (MAS) solid-state NMR (SSNMR) of CYP3A4 (Delta3-12) embedded in a nanoscale membrane bilayer, or Nanodisc. The growth protocol yields approximately 2.5 mg of the enzymatically active, uniformly 13C,15N-enriched CYP3A4 from 1 L of growth medium. Polyethylene glycol 3350-precipitated CYP3A4 in Nanodiscs yields spectra of high resolution and sensitivity, consistent with a folded, homogeneous protein. CYP3A4 in Nanodiscs remains enzymatically active throughout the precipitation protocol as monitored by bromocriptine binding. The 13C line widths measured from 13C-13C 2D chemical shift correlation spectra are approximately 0.5 ppm. The secondary structure distribution within several amino acid types determined from 13C chemical shifts is consistent with the ligand-free X-ray structures. These results demonstrate that MAS SSNMR can be performed on Nanodisc-embedded membrane proteins in a folded, active state. The combination of SSNMR and Nanodisc methodologies opens up new possibilities for obtaining structural information on CYP3A4 and other integral membrane proteins with full retention of functionality.  相似文献   

12.
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies.  相似文献   

13.
Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly (13)C,(15)N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS (13)C-(13)C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their (13)C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and (13)C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes.  相似文献   

14.
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.  相似文献   

15.
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self‐assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native‐like bilayer environment that maintain a target''s functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.  相似文献   

16.
The membrane-bound protein cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme. Most studies of ligand binding by CYP3A4 are currently carried out in solution, in the absence of a model membrane. Therefore, there is little information concerning the membrane effects on CYP3A4 ligand binding behavior. Phospholipid bilayer Nanodiscs are a novel model membrane system derived from high density lipoprotein particles, whose stability, monodispersity, and consistency are ensured by their self-assembly. We explore the energetics of four ligands (6-(p-toluidino)-2-naphthalenesulfonic acid (TNS), alpha-naphthoflavone (ANF), miconazole, and bromocriptine) binding to CYP3A4 incorporated into Nanodiscs. Ligand binding to Nanodiscs was monitored by a combination of environment-sensitive ligand fluorescence and ligand-induced shifts in the fluorescence of tryptophan residues present in the scaffold proteins of Nanodiscs; binding to the CYP3A4 active site was monitored by ligand-induced shifts in the heme Soret band absorbance. The dissociation constants for binding to the active site in CYP3A4-Nanodiscs were 4.0 microm for TNS, 5.8 microm for ANF, 0.45 microm for miconazole, and 0.45 microm for bromocriptine. These values are for CYP3A4 incorporated into a lipid bilayer and are therefore presumably more biologically relevant that those measured using CYP3A4 in solution. In some cases, affinity measurements using CYP3A4 in Nanodiscs differ significantly from solution values. We also studied the equilibrium between ligand binding to CYP3A4 and to the membrane. TNS showed no marked preference for either environment; ANF preferentially bound to the membrane, and miconazole and bromocriptine preferentially bound to the CYP3A4 active site.  相似文献   

17.
G-protein-coupled receptors transmit stimuli (light, taste, hormone, neurotransmitter, etc.) to the intracellular signaling systems, and rhodopsin (Rh) is the most-studied G-protein-coupled receptor. Rh possesses an 11-cis retinal as the chromophore, and 11-cis to all-trans photoisomerization leads to the protein structural changes in the cytoplasmic loops to activate G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. Microbial rhodopsins possess an all-trans retinal, and all-trans to 13-cis photoisomerization triggers protein structural changes for each function. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. However, it was reported that bacteriorhodopsin (BR) chimeras containing the third cytoplasmic loop of bovine Rh are able to activate G-protein, suggesting a common mechanism of protein structural changes. Here we design chimeric proteins for Natronomonas pharaonis sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin), which has a two-orders-of-magnitude slower photocycle than BR. Light-dependent transducin activation was observed for most of the nine SRII chimeras containing the third cytoplasmic loop of bovine Rh (from Y223, G224, Q225 to T251, R252, and M253), but the activation level was 30,000–140,000 times lower than that of bovine Rh. The BR chimera, BR/Rh223-253, activates a G-protein transducin, whereas the activation level was 37,000 times lower than that of bovine Rh. We interpret the low activation by the chimeric proteins as reasonable, because bovine Rh must have been optimized for activating a G-protein transducin during its evolution. On the other hand, similar activation level of the SRII and BR chimeras suggests that the lifetime of the M intermediates is not the simple determinant of activation, because SRII chimeras have two-orders-of-magnitude's slower photocycle than the BR chimera. Activation mechanism of visual and microbial rhodopsins is discussed on the basis of these results.  相似文献   

18.
G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test whether the same monomeric state is sufficient for rhodopsin phosphorylation and arrestin-1 binding. Here we show that monomeric active rhodopsin is phosphorylated by rhodopsin kinase (GRK1) as efficiently as rhodopsin in the native disc membrane. Monomeric phosphorylated light-activated Rh (P-Rh*) in nanodiscs binds arrestin-1 essentially as well as P-Rh* in native disc membranes. We also measured the affinity of arrestin-1 for P-Rh* in nanodiscs using a fluorescence-based assay and found that arrestin-1 interacts with monomeric P-Rh* with low nanomolar affinity and 1:1 stoichiometry, as previously determined in native disc membranes. Thus, similar to transducin activation, rhodopsin phosphorylation by GRK1 and high affinity arrestin-1 binding only requires a rhodopsin monomer.  相似文献   

19.
Chemoreceptors are central to bacterial chemotaxis. These transmembrane homodimers form trimers of dimers. Trimers form clusters of a few to thousands of receptors. A crucial receptor function is 100‐fold activation, in signalling complexes, of sensory histidine kinase CheA. Significant activation has been shown to require more than one receptor dimer but the number required for full activation was unknown. We investigated this issue using Nanodiscs, soluble, nanoscale (~10 nm diameter) plugs of lipid bilayer, to limit the number of neighbouring receptors contributing to activation. Utilizing size‐exclusion chromatography, we separated primary preparations of receptor‐containing Nanodiscs, otherwise heterogeneous for number and orientation of inserted receptors, into fractions enriched for specific numbers of dimers per disc. Fractionated, clarified Nanodiscs carrying approximately five dimers per disc were as effective in activating kinase as native membrane vesicles containing many neighbouring dimers. At five independently inserted dimers per disc, every disc would have at least three dimers oriented in parallel and thus able act together as they would in native membrane. We conclude full kinase activation involves interaction of CheA with groups of three receptor dimers, presumably as a trimer of dimers, and that more extensive interactions among receptors are not necessary for full kinase activation.  相似文献   

20.
Rhodopsins are densely packed in rod outer-segment membranes to maximize photon absorption, but this arrangement interferes with transducin activation by restricting the mobility of both proteins. We attempted to explore this phenomenon in transgenic mice that overexpressed rhodopsin in their rods. Photon capture was improved, and, for a given number of photoisomerizations, bright-flash responses rose more gradually with a reduction in amplification—but not because rhodopsins were more tightly packed in the membrane. Instead, rods increased their outer-segment diameters, accommodating the extra rhodopsins without changing the rhodopsin packing density. Because the expression of other phototransduction proteins did not increase, transducin and its effector phosphodiesterase were distributed over a larger surface area. That feature, as well as an increase in cytosolic volume, was responsible for delaying the onset of the photoresponse and for attenuating its amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号