首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pstA gene encodes an integral membrane protein of the phosphate-specific transport system of Escherichia coli. The nucleotide change in the previously described pstA2 allele was found to be a G----A substitution at position 276 of the nucleotide sequence, resulting in the premature termination of translation. Three mutations in the pstA gene were produced by site-directed mutagenesis. The amino acid substitutions resulting from the three site-directed mutations were Arg-170----Gln, Glu-173----Gln, and Arg-220----Gln. These amino acid residues were selected because a previous PstA protein structure prediction placed them within the membrane. The Arg-220----Gln mutation resulted in the loss of phosphate transport through the phosphate-specific transport system, but the alkaline phosphatase activity remained repressed. Neither the Arg-170----Gln nor the Glu-173----Gln mutation affected phosphate transport. The results are discussed in relation to a proposed structure of the PstA protein.  相似文献   

2.
Molecular aspects of phosphate transport in Escherichia coli   总被引:14,自引:0,他引:14  
Escherichia coli transports inorganic phosphate (Pi) by the low-affinity transport system, Pit. When the level of the external Pi is lower than 20 microM, another transport system, Pst, is induced with a Kt of 0.25 microM. An outer-membrane porin, PhoE, with a Km of about 1 microM is also induced. The outer membrane allows the intake of organic phosphates which are degraded to Pi by phosphatases in the periplasm. The Pi-binding protein will capture the free Pi produced in the periplasm and direct it to the transmembrane channel of the cytoplasmic membrane. The channel consists of two proteins, PstA and PstC, which have six and five transmembrane helices, respectively. On the cytoplasmic side of the membrane the channel is linked to the PstB protein, which carries a nucleotide (probably ATP)-binding site. PstB probably provides the energy required by the channel to free Pi. The Pst system has two functions in E. coli: (i) the transport of Pi, and (ii) the negative regulation of the phosphate regulon (a complex of 20 proteins mostly related to organic phosphate transport). It is remarkable that these two functions are not related, since the repressibility of the regulon depends on the integral structure of Pst (PiBP + PstA + PstC + PstB) and not on the Pi transported. Another gene of the pst operon, phoU, produces a protein involved in the negative regulation of the Pho regulon, but the mechanism of this function has not been explained. Thus the regulatory function of the Pst system remains obscure. Its basal level, present when Pi is abundant, is sufficient to repress the Pho regulon but the negative regulatory function is lost upon Pi starvation.  相似文献   

3.
The PheP protein is a high-affinity phenylalanine-specific permease of the bacterium Escherichia coli. A topological model based on genetic analysis involving the construction of protein fusions with alkaline phosphatase has previously been proposed in which PheP has 12 transmembrane segments with both N and C termini located in the cytoplasm (J. Pi and A. J. Pittard, J. Bacteriol. 178:2650–2655, 1996). Site-directed mutagenesis has been used to investigate the functional importance of each of the 16 proline residues of the PheP protein. Replacement of alanine at only three positions, P54, P341, and P442, resulted in the loss of 50% or more activity. Substitutions at P341 had the most dramatic effects. None of these changes in transport activity were, however, associated with any defect of the mutant protein in inserting into the membrane, as indicated by [35S]methionine labelling and immunoprecipitation using anti-PheP serum. A possible role for each of these three prolines is discussed. Inserting a single alanine residue at different sites within span IX and the loop immediately preceding it also had major effects on transport activity, suggesting an important role for a highly organized structure in this region of the protein.  相似文献   

4.
The specificity and reactivity of human alpha 1-proteinase inhibitor has been investigated by in vitro mutagenesis of the reactive site P1 methionine 358 residue to alanine 358 and cysteine 358. A comparison of the second-order association rates of both uncharged mutants with 9 serine proteinases indicated that each reacted similarly to either the normal plasma inhibitor or to a mutant containing valine in this position (Travis, J., Owen, M., George, P., Carrell, R., Rosenberg, S., Hallewell, R. A., and Barr, P. J. (1985) J. Biol. Chem. 260, 4384-4389) when tested against either neutrophil or pancreatic elastase. However, oxidation, carboxymethylation, or aminoethylation of the cysteine mutant to yield a charged P1 residue resulted in a significant decrease in association rates with both elastolytic enzymes, and aminoethylation created an excellent trypsin and plasmin inhibitor. These results indicate that the specificity of alpha 1-proteinase inhibitor is determined in a general manner by the class of amino acid residue in the P1 position. Substitution within the same category, such as from valine to alanine or cysteine among the aliphatic hydrophobic residues, has little effect on association rates with the elastolytic enzymes tested. However, alteration from an uncharged to a charged residue may cause considerable changes in both inhibitor specificity and reactivity as noted here with the cysteine derivatives and also previously with a natural variant in which methionine 358 to arginine 358 conversion resulted in the production of a potent thrombin inhibitor (Owen, M. C., Brennan, S. O., Lewis, J. H., and Carrell, R. W. (1983) N. Engl. J. Med. 309, 694-698).  相似文献   

5.
Cis proline mutants of ribonuclease A. I. Thermal stability.   总被引:8,自引:5,他引:3       下载免费PDF全文
A chemically synthesized gene for ribonuclease A has been expressed in Escherichia coli using a T7 expression system (Studier, F.W., Rosenberg, A.H., Dunn, J.J., & Dubendorff, J.W., 1990, Methods Enzymol. 185, 60-89). The expressed protein, which contains an additional N-terminal methionine residue, has physical and catalytic properties close to those of bovine ribonuclease A. The expressed protein accumulates in inclusion bodies and has scrambled disulfide bonds; the native disulfide bonds are regenerated during purification. Site-directed mutations have been made at each of the two cis proline residues, 93 and 114, and a double mutant has been made. In contrast to results reported for replacement of trans proline residues, replacement of either cis proline is strongly destabilizing. Thermal unfolding experiments on four single mutants give delta Tm approximately equal to 10 degrees C and delta delta G0 (apparent) = 2-3 kcal/mol. The reason is that either the substituted amino acid goes in cis, and cis<==>trans isomerization after unfolding pulls the unfolding equilibrium toward the unfolded state, or else there is a conformational change, which by itself is destabilizing relative to the wild-type conformation, that allows the substituted amino acid to form a trans peptide bond.  相似文献   

6.

Background

Proper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR.

Results

This work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis.

Conclusions

These bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems.
  相似文献   

7.
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.  相似文献   

8.
The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins.  相似文献   

9.
Membranes derived from the Escherichia coli strain AN1460 which carries the multicopy plasmid pAN45 (unc+) (Downie, J. A., Langman, L., Cox, G. B., Yanofsky, C., and Gibson, (1980) J. Bacteriol. 143, 8-17) were enriched 5- to 10-fold in proton-ATPase activity. Incubation of F1-depleted AN1460 membranes with trypsin abolished F1-binding ability but did not inhibit proton transport through the membrane sector (F0). Sodium dodecyl sulfate-gel electrophoresis indicated that subunit "b" (uncF protein) of F0 was cleaved by trypsin and prebound F1 protected against the trypsin effect. Subunits "a" (uncB protein) and "c" (uncE protein) were unaffected by the trypsin treatment. A water-soluble fragment (Mr = 14,800) was liberated after trypsin treatment and appeared to arise from subunit b. Studies of enzyme hybridization and of F1 binding to membranes derived from strains containing mutations in uncB, F, and E genes supported the suggestion that subunit b is involved in F1 binding to the F0. Also, extraction of membranes with KSCN increased the relative proportion of subunit b in the membrane and this coincided with a parallel increase in trypsin-sensitive F1-binding ability. It is proposed that subunit b is involved in binding of F1 to the F0; this agrees with the presumed role of the protein as deduced from predictions of its secondary and tertiary structure (Walker, J. E., Saraste, M., and Gay, N. J. (1982) Nature (Lond.) 298, 867-869; Senior, A. E. (1983) Biochim. Biophys. Acta, in press).  相似文献   

10.
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.  相似文献   

11.
The organization of the phosphate-specific transport (pst) operon inPseudomonas aeruginosa has been determined. The gene order of thepst operon ispstC, pstA, pstB, phoU, and a well-conserved Pho box sequence (16/18 bases identical) exists in the promoter region. The most striking difference from the knownEscherichia coli pst operon is the lack of thepstS gene encoding a periplasmic phosphate (Pi)-binding protein. Even though the threepst genes were absolutely required for Pi-specific transport, expression of thepst operon at high levels did not increase Pi uptake inP. aeruginosa. DNA sequences for thepstB andphoU genes have been determined previously. The newly identifiedpstC andpstA genes encode possible integral membrane proteins of 677 amino acids (M r 73 844) and 513 amino acids (M r 56 394), respectively. The amino acid sequences of PstC and PstA predict that these proteins contain a long hydrophilic domain not seen in theirE. coli counterparts. A chromosomal deletion of the entirepst operon renderedP. aeruginosa unable to repress Pi taxis under conditions of Pi excess. ThephoU andpstB genes are essential for repressing Pi taxis. However, mutants lacking either PstC or PstA alone were able to repress Pi taxis under conditions of Pi excess.  相似文献   

12.
A gene encoding a protein homologous to the periplasmic ABC phosphate binding receptor PstS from Escherichia coli was cloned and sequenced from a lambda gt11 library of Mycobacterium tuberculosis by screening with monoclonal antibody 2A1-2. Its degree of similarity to the E. coli PstS is comparable to those of the previously described M. tuberculosis phosphate binding protein pab (Ag78, Ag5, or 38-kDa protein) and another M. tuberculosis protein which we identified recently. We suggest that the three M. tuberculosis proteins share a similar function and could be named PstS-1, PstS-2, and PstS-3, respectively. Molecular modeling of their three-dimensional structures using the structure of the E. coli PstS as a template and their inducibility by phosphate starvation support this view. Recombinant PstS-2 and PstS-3 were produced and purified by affinity chromatography. With PstS-1, these proteins were used to demonstrate the specificity of three groups of monoclonal antibodies. Using these antibodies in flow cytometry and immunoblotting analyses, we demonstrate that the three genes are expressed and their protein products are present and accessible at the mycobacterial surface as well as in its culture filtrate. Together with the M. tuberculosis genes encoding homologs of the PstA, PstB, and PstC components we cloned before, the present data suggest that at least one, and possibly several, related and functional ABC phosphate transporters exist in mycobacteria. It is hypothesized that the mycobacterial gene duplications presented here may be a subtle adaptation of intracellular pathogens to phosphate starvation in their alternating growth environments.  相似文献   

13.
Nucleotides encoding glutamate, glutamine, aspartate, or asparagine residues within the stalk sector of the sarcoplasmic reticulum Ca2+-ATPase were altered by oligonucleotide-directed site-specific mutagenesis. The mutant cDNAs were expressed in COS-1 cells, and mutant Ca2+-ATPases were assayed for Ca2+ transport function and phosphoenzyme formation. Multiple mutations introduced into stalks, 1, 2, and 3 resulted in partial loss of Ca2+ transport function. In most cases, subsequent mutation of individual amino acids in the cluster had no effect on Ca2+ transport activity. In one cluster, however, it was possible to assign the reduction in Ca2+ transport activity to alterations of Asn111 and Asn114. The mutant Asn114 to alanine retained about 50% activity, whereas the change Asn111 to alanine retained only 10% activity. None of the mutations affected phosphorylation of the enzyme by ATP in the presence of Ca2+ or by inorganic phosphate in the absence of Ca2+. The combined experiments suggest that the reduced Ca2+ uptake observed in the Asn111 and Asn114 mutants was not due to a defect in enzyme activation by Ca2+ or in formation of the phosphorylated enzyme intermediate but rather to incompetent handling of the bound Ca2+ following ATP utilization. These results demonstrate that the acidic and amidated residues within the stalk region do not constitute the high affinity Ca2+-binding sites whose occupancy is required for enzyme activation. They may, however, act to sequester cytoplasmic Ca2+ and to channel it to domains that are involved in enzyme activation and cation translocation. Simultaneous mutation of 4 glutamate residues to alanine in the lumenal loop between transmembrane sequences M1 and M2 did not affect Ca2+ transport activity, indicating that acidic residues in this lumenal loop do not play an essential role in Ca2+ transport. Similarly, mutation of Glu192 and Asp196 in the beta-strand domain between stalk helices 2 and 3 did not affect Ca2+ transport activity, although mutation of Asp196 did diminish expression of the protein.  相似文献   

14.
张鹏  王龙  谢明杰 《微生物学报》2019,59(8):1429-1436
无机磷酸盐(Pi)在菌体遗传、能量代谢及细胞内的信号传导等生物过程中发挥重要的作用。在细菌中,主要由磷酸盐特殊转运系统(Pst)和磷酸盐转运系统(Pit)来完成对Pi的吸收和利用。其中,Pst是在低磷胁迫下转运Pi的关键系统。近年来的研究表明,Pst系统除在调控Pi的代谢和平衡中发挥重要作用外,还介导细菌耐药、产毒和侵袭等。Pst系统是ABC转运蛋白家族的一种,一般由PstS、PstC、PstA、PstB和PhoU5个蛋白组成。其中,PstS和PstB蛋白是该系统中的关键蛋白。本文重点对PstS和PstB调控Pi转运和介导细菌耐药的分子机制进行综述,旨在为深入研究该系统与细菌耐药的关系,以及研发以PstS和PstB为靶点的新药提供参考。  相似文献   

15.
Lactococcus lactis ML3 possesses two different peptide transport systems of which the substrate size restriction and specificity have been determined. The first system is the earlier-described proton motive force-dependent di-tripeptide carrier (E. J. Smid, A. J. M. Driessen, and W. N. Konings, J. Bacteriol. 171:292-298, 1989). The second system is a metabolic energy-dependent oligopeptide transport system which transports peptides of four to at least six amino acid residues. The involvement of a specific oligopeptide transport system in the utilization of tetra-alanine and penta-alanine was established in a mutant of L. lactis MG1363 that was selected on the basis of resistance to toxic analogs of alanine and alanine-containing di- and tripeptides. This mutant is unable to transport alanine, dialanine, and trialanine but still shows uptake of tetra-alanine and penta-alanine. The oligopeptide transport system has a lower activity than the di-tripeptide transport system. Uptake of oligopeptides occurs in the absence of a proton motive force and is specifically inhibited by vanadate. The oligopeptide transport system is most likely driven by ATP or a related energy-rich, phosphorylated intermediate.  相似文献   

16.
The human intestinal di-/tripeptide transporter (hPEPT1) is a 12-transmembrane protein that facilitates transport of peptides from the intestine into the circulation. hPEPT1 is also an important target in oral delivery of drugs, but mechanistic and structural data for the protein are limited. In particular, there is little information on the function of the loops of the transporter. In this study, we show that mutation of several charged residues in the largest intracellular loop of hPEPT1 (loop 6-7, amino acids 224-278) significantly reduces hPEPT1 function. This loop has an asymmetric distribution of charged residues, with only positive charges in the N-terminal half and all five negative charges in the loop located in a small part of the C-terminal half. Point mutagenesis to alanine of three positive residues in the N-terminal half of loop 6-7 and four negative residues in the C-terminal half of the loop significantly reduced glycylsarcosine uptake. E267 was particularly sensitive to mutation, and kinetic analyses of E267A- and E267K-hPEPT1 gave V (max) values 10-fold lower than that for the wild-type protein. Secondary structure prediction suggested that loop 6-7 includes two amphipathic α-helices, with net positive and negative charges, respectively. We interpret the mutagenesis data in terms of interactions of the charged residues in loop 6-7 that may influence conformational changes of hPEPT1 during and after substrate transport.  相似文献   

17.
The azlB locus of Bacillus subtilis was defined previously by a mutation conferring resistance to a leucine analog, 4-azaleucine (J. B. Ward, Jr., and S. A. Zahler, J. Bacteriol. 116:727-735, 1973). In this report, azlB is shown to be the first gene of an operon apparently involved in branched-chain amino acid transport. The product of the azlB gene is an Lrp-like protein that negatively regulates expression of the azlBCDEF operon. Resistance to 4-azaleucine in azlB mutants is due to overproduction of AzlC and AzlD, two novel hydrophobic proteins.  相似文献   

18.
Yeast aminopeptidase I is a vacuolar enzyme, which catalyzes the removal of amino acids from the NH2 terminus of peptides and proteins (Frey, J., and Rohm, K-H. (1978) Biochim. Biophys. Acta 527, 31-41). A yeast genomic DNA encoding aminopeptidase I was cloned from a yeast EMBL3A library and sequenced. The DNA sequence encodes a precursor protein containing 514 amino acid residues. The "mature" protein, whose NH2-terminal sequence was confirmed by automated Edman degradation, consists, based only on the DNA sequence, of 469 amino acids. A 45-residue presequence contains positively and negatively charged as well as hydrophobic residues, and its NH2-terminal residues could be arrayed in an amphiphilic alpha-helix. This presequence differs from the signal sequences which direct proteins across bacterial plasma membranes and endoplasmic reticulum or into mitochondria. It remains to be established how this unique presequence targets aminopeptidase I to yeast vacuoles and how this sorting utilizes classical protein secretory pathways. Further, the aminopeptidase I gene, localized previously by genetic mapping to yeast chromosome XI and called the LAP4 gene (Trumbly, R. J., and Bradley, G. (1983) J. Bacteriol. 156, 36-48), was determined by DNA blot analyses to be a single copy gene located on chromosome XI.  相似文献   

19.
Wild-type Escherichia coli K-12 produces two porins, OmpF (protein 1a) and OmpC (protein 1b). In mutants deficient in both of these "normal" porins, secondary mutants that produce a "new" porin, protein PhoE (protein E), are selected for. We determined the properties of the channels produced by each of these porins by measuring the rates of diffusion of various cephalosporins through the outer membrane in strains producing only one porin species. We found that all porin channels retarded the diffusion of more hydrophobic cephalosporins and that with monoanionic cephalosporins a 10-fold increase in the octanol-water partition coefficient of the solute produced a 5- to 6-fold decrease in the rate of penetration. Electrical charges of the solutes had different effects on different channels. Thus, with the normal porins (i.e., OmpF and OmpC proteins) additional negative charge drastically reduced the penetration rate through the channels, whereas additional positive charge significantly accelerated the penetration. In contrast, diffusion through the PhoE channel was unaffected by the presence of an additional negative charge. We hypothesize that the relative exclusion of hydrophobic and negatively charged solutes by normal porin channels is of ecological advantage to E. coli, which must exclude hydrophobic and anionic bile salts in its natural habitat. The properties of the PhoE porin are also consistent with the recent finding (M. Argast and W. Boos, J. Bacteriol. 143:142-150, 1980; J. Tommassen and B. Lugtenberg, J. Bacteriol. 143:151-157, 1980) that its biosynthesis is derepressed by phosphate starvation; the channel may thus act as an emergency pore primarily for the uptake of phosphate and phosphorylated compounds.  相似文献   

20.
Marin EP  Krishna AG  Sakmar TP 《Biochemistry》2002,41(22):6988-6994
Photoactivated rhodopsin (R) catalyzes nucleotide exchange by transducin, the heterotrimeric G protein of the rod cell. Recently, we showed that certain alanine replacement mutants of the alpha5 helix of the alpha subunit of transducin (Galpha(t)) displayed very rapid nucleotide exchange rates even in the absence of R [Marin, E. P., Krishna, A. G., and Sakmar, T. P. (2001) J. Biol. Chem. 276, 27400-27405]. We suggested that R catalyzes nucleotide exchange by perturbing residues on the alpha5 helix. Here, we characterize deletion, insertion, and proline replacement mutants of amino acid residues in alpha5. In general, the proline mutants exhibited rates of uncatalyzed nucleotide exchange that were 4-8-fold greater than wild type. The proline mutants also generally displayed decreased rates of R-catalyzed activation. The degree of reduction of the activation rate correlated with the position of the residue replaced with proline. Mutants with replacement of residues at the amino terminus of alpha5 exhibited mild (<2-fold) decreases, whereas mutants with replacement of residues at the carboxyl terminus of alpha5 were completely resistant to R-catalyzed activation. In addition, insertion of a single helical turn in the form of four alanine residues following Ile339 at the carboxyl terminus of alpha5 prevented R-catalyzed activation. Together, the results provide evidence that alpha5 serves an important function in mediating R-catalyzed nucleotide exchange. In particular, the data suggest the importance of the connection between the alpha5 helix and the adjacent carboxyl-terminal region of Galpha(t).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号