首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We report results on the functional analysis of Saccharomyces cerevisiae ORF YNL065w, predicted to code for a protein belonging to the poorly characterized major facilitator superfamily (MFS) of transporters that are involved in multidrug resistance (MDR). YNL065w is important for a moderate increase of yeast tolerance to ketoconazole and to the cationic dye crystal violet; it protects the cell against short-chain monocarboxylic acids (C(2)-C(6)), but not against highly liposoluble acids such as octanoic acid or the phenoxyacetic-acid herbicides 2,4-D and MCPA; it is also a determinant of resistance to the antiarrhytmic and antimalarial drug quinidine. The encoding ORF was, thus, denominated the AQR1 gene. Results obtained using an AQR1-lacZ fusion indicate that gene expression is very low and it is not stimulated under weak acid stress. The encoded putative transporter was localized in the plasma membrane by fluorescence microscopy observation of the overproduced Aqr1-GFP fusion protein distribution.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Saccharomyces cerevisiae ORF YBR043c, predicted to code for a transporter of the major facilitator superfamily required for multiple drug resistance, encodes a plasma membrane protein that confers resistance to quinidine and barban, as observed before for its close homologues QDR1 and QDR2. This ORF was, thus, named the QDR3 gene. The increased expression of QDR3, or QDR2, also leads to increased resistance to the anticancer agents cisplatin and bleomycin. However, no evidence for increased QDR3 expression in yeast cells exposed to all these inhibitory compounds was found. Transport assays support the concept that Qdr3 is involved, even if opportunistically, in the active export of quinidine out of yeast cell. A correlation was established between the efficiency of quinidine active export mediated by Qdr3p, Qdr2p or Qdr1p, and the efficacy of the expression of the encoding genes in alleviating the deleterious action of quinidine, as well as of the other compounds (QDR2>QDR3>QDR1).  相似文献   

15.
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.  相似文献   

16.
17.
Tetraspanins are animal proteins involved in membrane complexes that are involved in cell adhesion, differentiation, and motility. The PLS1 gene from rice blast fungus Magnaporthe grisea encodes a protein (Pls1p) structurally related to tetraspanins that is required for pathogenicity. In Botrytis cinerea public sequences, we identified an EST homologous to PLS1. Using degenerated oligonucleotides, we amplified sequences homologous to PLS1 in fungi Colletotrichum lindemuthianum and Neurospora crassa. Analysis of N. crassa and M. grisea genome sequences revealed the presence of a single tetraspanin gene. Thus, fungi differ from animals, which contain between 20 and 37 paralogous tetraspanin genes. Fungal proteins encoded by BcPLS1, ClPLS1, and NcPLS1 display all the structural hallmarks of tetraspanins (predicted topology with four transmembrane domains, extra- and intracellular loops; conserved cysteine-based patterns in second extracellular loop). Phylogenetic analysis suggests that these genes define a new family of orthologous genes encoding fungal-specific tetraspanins.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号