首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We reported that: (i) 3Y1tsF121 cells, a temperature-sensitive (ts) mutant of rat 3Y1 fibroblasts, are reversibly arrested either in the G1 or in the G2 phase, at the nonpermissive temperature. (ii) Cells retain the ability to resume proliferation at the permissive temperature after prolonged arrest in the G1 phase (for 5 days), whereas they lose it after prolonged arrest in the G2 phase (over 24 h). (iii) The G1 arrest is overcome at the nonpermissive temperature by the addition of fresh serum (H. Zaitsu and G. Kimura (1984) J. Cell. Physiol. 119, 82; (1985) J. Cell. Physiol. 124, 177). In the present study, the G2 arrest was overcome by exposing the cells to fresh serum, at the nonpermissive temperature. The G2 arrest occurred only at a higher cell density than that of the G1 arrest. The efficiency of the overcome was higher in the case of the G2 arrest than in case of the G1 arrest. When cells synchronized at the G1/S border by aphidicolin at the permissive temperature were released from the block, they divided in the absence of serum, at the permissive temperature. Even if they had passed through the previous G2 phase in a very high concentration of fresh serum at the permissive temperature, mitotic cells did not enter the S phase in the absence of serum, even at the permissive temperature. When the cells arrested in the G1 phase (not in G0) due to the ts defect were incubated in the absence of serum at the permissive temperature, only 34% entered the S phase and only 15% divided. These results suggest that (i) the ts defect in 3Y1tsF121 limiting cellular proliferation in both the G1 and the G2 phases is probably due to a single mutational event, and is a serum-requiring event. (ii) Preparation of the serum-requiring event which is required for the G2 traverse is completed in the G1 phase, under ordinary conditions. (iii) However, cells are able to fulfill the serum-requiring event in the G2 phase as well as in the G1 phase when the preparation is below the required level. (iv) The commitment to DNA synthesis is not necessarily a commitment to cell division. (v) Cells are arrested in the G1 phase more safely and more effectively than in the G2 phase, by the serum-related mechanism.  相似文献   

2.
Proliferation of 3Y1tsF121 cells was arrested in G1 and G2 phases after a shift up to 39.8 degrees C (restrictive temperature). Both arrests were reversible: after a shift down to 33.8 degrees C (permissive temperature), these cells effectively entered the next phases. However, the entry into M phase of the G2-arrested cells was delayed depending on the time in arrest. The G2-arrested cells finally became incapable of entering M phase with a prolonged incubation at 39.8 degrees C. Under the same condition, G1-arrested cells did not lose their ability to proliferate, and their delay of entry into S phase was slight. Therefore, cells in G2 phase are, in a sense, more unstable than the cells in G1 phase. These results also suggest that the time required for entry into M phase may depend on the preparedness for the initiation of M phase and, that it may be prolonged under the condition where the preparedness for entry into M phase is diminished.  相似文献   

3.
Human diploid fibroblasts have a finite proliferative lifespan in culture, at the end of which they are ararrested with G1 phase DNA contents. Upon serum stimulation, senescent cells are deficient in carrying out a subset of early signal transduction events such as activation of protein kinase C and induction of c-fos. Later in G1, they uniformly fail to express late G1 genes whose products are required for DNA synthesis, implying that they are unable to pass the R point. Failure to pass the R point may occur because senescent cells are unable to phosphorylate the retinoblastoma protein, owing to the accumulation of inactive complexes of cyclin E/Cdk2 and possibly cyclin D/Cdk4. Senescent cells contain high amounts of p21, a potent cyclin-dependent kinase inhibitor whose levels are also elevated in cells arrested in G1 following DNA damage, suggesting that both arrests might share a common mechanism. Cell aging is accompanied by a progressive shortening of chromosomal telomeres, which could be perceived by the cells as a form of DNA damage that gives rise to the signals that inactivate the cell cycle machinery.  相似文献   

4.
Three temperature-sensitive cell-cycle mutants of rat 3Y1 fibroblasts (3Y1tsD123, 3Y1tsG125, and 3Y1tsH203, each belonging to distinct complementation groups) were transformed with plasmid DNA carrying Harvey murine sarcoma virus cDNA. The criteria for transformation were increase in saturation cell density, capability to clone in soft agar, and alteration in the cellular morphology. At 39.8 degrees C (restrictive temperature of the parental cell lines), all the transformed sublines of each mutant ceased to proliferate and were arrested reversibly in the G1 phase of the cell cycle like the parental lines. At both 39.8 degrees C and 33.8 degrees C (permissive temperature for the parental lines), all the untransformed parental lines synthesized p21ras at low rate. At 33.8 degrees C, all the transformed sublines synthesized p21ras at much higher rate and expressed the morphological phenotype characteristic to v-H-ras-induced transformation. At 39.8 degrees C, the rate of p21ras synthesis was not changed in the transformed sublines of 3Y1tsD123 and 3Y1tsG125, and the morphology of transformed phenotype also remained intact. In the transformed subline of 3Y1tsH203, the rate of p21ras synthesis was lowered at 39.8 degrees C to that seen in the untransformed parental line, and the transformed phenotype in morphology disappeared. In all of the transformed sublines, the amount of v-H-ras mRNA markedly expressed at both 33.8 degrees C and 39.8 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Four temperature-sensitive mutants of rat 3Y1 fibroblasts belonging to separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested mainly with a 2C DNA content, when cells proliferating at 33.8 degrees C are shifted up to 39.8 degrees C (Ohno et al., 1984). Zaitsu and Kimura (submitted for publication) showed that 3Y1tsF121 cells synchronized in the early S phase were arrested with a 4C DNA content at 39.8 degrees C. We studied the traverse through the S and G2 phases at 39.8 degrees C in the four ts mutants synchronized at the early S phase and found that 3Y1tsG125 and 3Y1tsH203 cells were arrested with a 4C DNA content as 3Y1tsF121, while 3Y1tsD123 cells went through S and G2 phases and underwent mitosis. When 3Y1tsF121 and 3Y1tsG125 mutants arrested at 39.8 degrees C were shifted down to 33.8 degrees C, a substantial fraction of the cells with a 4C DNA content started, with a certain lag period, DNA synthesis without intervening mitosis and underwent the first mitosis with a lag period similar to that in the cells arrested with a 2C DNA content. The tetraploid cells thus generated had a proliferating ability lower than that of diploid cells.  相似文献   

7.
8.
9.
10.
Following growth stimulation of rat embryo fibroblast (REF) cells previously arrested in G1 by serum deprivation, there occurs a large increase in the synthesis of the polyamines putrescine, spermidine and spermine. Methylglyoxal bis(guanylhydrazone) (MGBG), a potent inhibitor of S-adenosylmethionine decarboxylase can block the accumulation of both spermidine and spermine over a period of several days. Under such conditions REF cells treated with MGBG will approximately double in number and then become growth-arrested again predominantly in the G1 phase of the cell cycle. REF cells therefore appear to contain sufficient spermidine and spermine to progress through one cell cycle before the intracellular levels of these polyamines is reduced sufficiently to arrest growth in the absence of continued polyamine synthesis. Limitation of intracellular polyamine levels is therefore not the mechanism by which deprivation of serum growth factors arrests cell growth. While continued growth is nevertheless dependent on polyamine synthesis, this cell type is capable of limited proliferation in its absence. Addition of spermidine or spermine to MGBG-arrested REF cells results in a rapid resumption of proliferation demonstrating that either polyamine can fulfill the role played by these polyamines in the growth process. Low levels of spermidine and spermine therefore arrest this cell type at a resriction point in G1 at which it is decided whether the intracellular level of these polyamines is sufficiently high to enable a cell to enter into and complete a new cell cycle. This polyamine-sensitive restriction point is considered to be analogous to the restriction point(s) in G1 at which serum and nutrient limitation act.  相似文献   

11.
Proliferation of human B- and T-lymphoid cell lines including Raji and Akata cells was found to be arrested at the G1 stage in the cell cycle by dimethyl sulfoxide (DMSO). The G1 arrest by DMSO occurred gradually and was completed within 96 h after addition of 1.5% DMSO concomitantly with a decrease in growth rate. Progression of G1-phase cells containing a larger amount of RNA into S-phase began 9-12 h after removal of DMSO. At 24 h, the DNA pattern of the cell cycle was similar to that of nontreated log-phase cells. The expression of six differentiation markers on the lymphoid cells was not appreciably changed by treatment with DMSO. On the other hand, the expression of transferrin receptor (one of the growth-related markers) on G1-phase cells 96 h after addition of DMSO was decreased to one-fourth that on log-phase cells and was completely restored 24 h after removal of DMSO. These results indicate that DMSO, known as an inducer of differentiation in several myeloid cell lines, acts as an agent inducing G1 arrest in the cell cycle of the lymphoid cells.  相似文献   

12.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

13.
Arginine vasopressin (AVP) induces immediate prostaglandin E(2) (PGE(2)) production in rat 3Y1 fibroblasts. Judging from effects of several inhibitors, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) and cyclooxygenase-1 (COX-1) were mainly involved in this reaction. The antagonist of vasopressin receptor V1a, and not that of V2, inhibited the AVP-induced PGE(2) synthesis, indicating that AVP activates cPLA(2)alpha through V1a receptor. Treatment of 3Y1 cells with AVP resulted in transient activation of p44/42 mitogen-activated protein kinase (MAPK) and cPLA(2)alpha, and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked not only AVP-induced PGE(2) synthesis but also MAPK activation, suggesting that PI3K is involved in the AVP-induced MAPK and cPLA(2)alpha activation, which initiates the production of PGE(2). These results suggest that PGE(2) generated by the stimulation of AVP probably modulates the physiological effects of AVP.  相似文献   

14.
Quiescent 3Y1 cells in monolayer cultures were dispersed with trypsin-EDTA, suspended in various media, and the cellular heat production was measured in a flow-type microcalorimeter set at 37 degrees C. A linear relationship was found to exist between the number of cells applied to the microcalorimeter and the heat output. Increasing concentrations of bovine serum albumin (BSA) and of fetal calf serum (FCS) added in Dulbecco's modified Eagle's medium (DEM) enhanced the heat output to the same saturation level. Trypsin inhibitor added in DEM enhanced the heat output, but to a lower saturation level than FCS or BSA did, indicating that BSA has an activity to enhance cellular heat production by a mechanism other than neutralizing residual trypsin. The heat output was found to gradually decrease in the microcalorimeter. This reduction was not enhanced by a two-fold dilution of the medium (DEM plus FCS) with phosphate-buffered saline, indicating that this reduction is not caused by the depletion of nutrients and serum factors in the medium. Similarly, when cells were incubated for 155 or 220 min in suspension in DEM plus BSA at 37 degrees C and applied to the microcalorimeter, the heat output decreased. However, no significant reduction of the heat output was observed after holding the cells at 0 degree C in suspension for the same period. This and other facts suggest that depletion of O2 dissolved in the medium is involved in the gradual decrease in heat output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The aim of this study was to assess a possible role of monochloramine (NH2Cl), one of the reactive chlorine species, which induce oxidative stress, on the proliferation of colorectal cancer cell line Caco‐2. At concentrations ranging from 10 to 200 μM, NH2Cl (14–61% inhibition), but not hypochlorous acid, dose‐dependently inhibited the cell viability of Caco‐2 cells. Experiments utilizing methionine (a scavenger of NH2Cl), taurine‐chloramine and glutamine‐chloramine revealed that only NH2Cl affects the cancer cell proliferation among reactive chlorine species, with a relative specificity. Furthermore, flow‐cytometry experiments showed that the anti‐proliferative effect of NH2Cl is partially attributable to both apoptosis and G2/M cell cycle arrest. These results suggest that NH2Cl has the potential to suppress colorectal cancer cell proliferation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Reversible arrest of Chinese hamster V79 cells in G2 by dibutytyl AMP.   总被引:4,自引:0,他引:4  
Mouse L cells 929 were cloned in supplemented Eagle's minimal medium enriched with lactalbumin and yeast extract and buffered with HEPES. Multiplication was followed photographically in single clones from the 8-cell stage through 6–7 days. Addition of the folic acid analogue methotrexate (amethopterin) in 5 × 10?6 M concentration slowed growth only after two cell generations; 10?4 M uridine had no effect on growth except when combined with methotrexate. The two agents together blocked cell division quickly and symptoms of thymine-less death developed in few days. The cells could be rescued before 48 h by removal of the inhibitors, or by addition of folic acid or thymidine. The combination of methotrexate with uridine blocks DNA synthesis in Tetrahymena by inhibition of thymidylate synthesis and of thymidine uptake from the complex medium. Apparently the same mechanisms operate in L cells grown in a complex medium containing thymidine.  相似文献   

17.
18.
Leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family, plays a complex role in cancer. LIF inhibits the proliferation and survival of several myeloid leukemia cells but promotes tumor progression and metastasis in many solid tumors. However, the relationship between LIF and gastric cancer has not been well understood. LIF was downregulated in gastric cancer as detected by western blot analysis and immunohistochemistry (IHC). Notably, LIF was downregulated in approximately 70% (56/80) of primary gastric cancers, in which it was significantly associated with advanced clinical stage, lymph node metastasis, and poor overall survival (median 5-year survival = 26 vs. 43 months for patients with high LIF expression and low LIF expression gastric cancer, respectively). To study the potential function of LIF in the downregulation of gastric cancer, we monitored the behavior using proliferation, cell cycle, and flow cytometry analysis. Overexpression of LIF inhibited the gastric cancer cell cycle in the G1 phase. In our experiment, overexpression of LIF by lentivirus upregulated P21 and downregulated cyclin D1. Recombinant human LIF also downregulated P21 and cyclin D1 at various times. A further in vivo tumor formation study in nude mice indicated that overexpression of LIF in gastric cancer significantly delayed the progress of tumor formation. These findings indicate that LIF may serve as a negative regulator of gastric cancer.  相似文献   

19.
The MUC1 transmembrane glycoprotein is overexpressed by most human carcinomas. Overexpression of MUC1 confers transformation; however, the signaling pathways activated by this oncoprotein are largely unknown. The present studies demonstrated that MUC1-induced transformation of 3Y1 fibroblasts is associated with increased levels of phospho-Akt and phospho-Bad. The finding that LY294002 blocks MUC1-mediated increases in phospho-Akt and phospho-Bad supports the involvement of phosphoinositide 3-kinase (PI3K) as an upstream effector of this response. We also show that MUC1 increases the expression of the anti-apoptotic Bcl-x(L) protein (but not Bcl-2) by a PI3K-independent mechanism. In concert with these results, MUC1 attenuated (i) the loss of mitochondrial transmembrane potential, (ii) mitochondrial cytochrome c release, (iii) activation of caspase-9, and (iv) induction of apoptosis by the antimetabolite, 1-beta-d-arabinofuranosylcytosine. Similar results were obtained with the anti-cancer agent, gemcitabine. These findings indicate that expression of MUC1 in 3Y1 cells activates the anti-apoptotic PI3K/Akt and Bcl-x(L) pathways.  相似文献   

20.
Porphyromonas gingivalis is an oral pathogen that is also associated with serious systemic conditions such as preterm delivery. Here we investigated the interaction between P. gingivalis and a cell line of extravillous trophoblasts (HTR-8) derived from the human placenta. P. gingivalis internalized within HTR-8 cells and inhibited proliferation through induction of arrest in the G1 phase of the cell cycle. G1 arrest was associated with decreased expression of cyclin D and of CDKs 2, 4 and 6. In addition, levels of CDK inhibitors p15, p16, p18 and p21 were increased following P. gingivalis infection. The amount of Rb was diminished by P. gingivalis, and transient overexpression of Rb, with concomitant upregulation of phospho-Rb, relieved P. gingivalis -induced G1 arrest. HTR-8 cells halted in the G1 phase became apoptotic, and apoptosis was accompanied by an increase in the ratio of Bax/Bcl-2 and increased activity of caspases 3, 7 and 9. HTR-8 cells infected with P. gingivalis also exhibited a sustained activation of ERK1/2, and knock-down of ERK1/2 activity with siRNA abrogated both G1 arrest and apoptosis. Thus, P. gingivalis can invade placental trophoblasts and induce G1 arrest and apoptosis through pathways involving ERK1/2 and its downstream effectors, properties that provide a mechanistic basis for pathogenicity in complications of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号