首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

2.
Atypical protein kinases C, including protein kinase Ciota (PKCiota), play critical roles in signaling pathways that control cell growth, differentiation and survival. This qualifies them as attractive targets for development of novel therapeutics for the treatment of various human diseases. In this study, the full-length PKCiota was expressed in Sf9 insect cells, purified, and digested with trypsin and endoproteinase Asp-N, and its phosphorylation analyzed by liquid chromatography-high accuracy mass spectrometry. This strategy mapped 97% of the PKCiota protein sequence and revealed seven new Ser/Thr phosphorylation sites, in addition to the two previously known, pThr403 in the activation loop and pThr555 in the turn motif of the kinase domain. Most of the newly identified phosphorylation sites had low estimated occupancies (below 2%). Two phosphorylation sites were located in domain connecting amino acid sequence stretches (pSer217 and pSer237/pSer238) and may contribute to an improved stability and solubility of the protein. The most interesting new phosphorylation site was detected in a well-accessible loop of the PB1 domain (pSer35/pSer37) and may be involved in the interactions of the PB1 domain with different partners in the relevant signaling pathways.  相似文献   

3.
4.
Bruton's tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X-ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly-rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2-kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 3(10)- and α-helices, one of which collapses into the adenosine-5'-triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG-out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure-based design of specific inhibitors.  相似文献   

5.
A member of the novel protein kinase C (PKC) subfamily, PKC, is an essential component of the T cell synapse and is required for optimal T cell activation and interleukin-2 production. Selective involvement of PKC in TCR signaling makes this enzyme an attractive therapeutic target in T cell-mediated disease processes. In this report we describe the crystal structure of the catalytic domain of PKC at 2.0-A resolution. Human recombinant PKC kinase domain was expressed in bacteria as catalytically active phosphorylated enzyme and co-crystallized with its subnanomolar, ATP site inhibitor staurosporine. The structure follows the classic bilobal kinase fold and shows the enzyme in its active conformation and phosphorylated state. Inhibitory interactions between conserved features of staurosporine and the ATP-binding cleft are accompanied by closing of the glycine-rich loop, which also maintains an inhibitory arrangement by blocking the phosphate recognition subsite. The two major phosphorylation sites, Thr-538 in the activation loop and Ser-695 in the hydrophobic motif, are both occupied in the structure, playing key roles in stabilizing active conformation of the enzyme and indicative of PKC autocatalytic phosphorylation and activation during bacterial expression. The PKC-staurosporine complex represents the first kinase domain crystal structure of any PKC isotypes to be determined and as such should provide valuable insight into PKC specificity and into rational drug design strategies for PKC selective leads.  相似文献   

6.
The Ser/Thr protein kinase MAPKAP kinase 2 (MK2) plays a crucial role in inflammation. We determined the structure of the kinase domain of MK2 in complex with a low molecular mass inhibitor in two different crystal forms, obtained from soaking and co-crystallization. To our knowledge, these are the first structures of MK2 showing the binding mode of an inhibitor with high binding affinity (IC50 8.5 nM). The two crystal forms revealed conformational flexibility in the binding site and extend the experimental basis for rational drug design. Crystal form-1 contained one MK2 molecule per asymmetric unit. Form-2 contained 12 molecules, which arrange into two different types of MK2 trimers. One of them may serve as a model for an intermediate state during substrate phosphorylation, as each MK2 monomer places its activation segment into the substrate peptide binding groove of the trimer neighbor.  相似文献   

7.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

8.
Many Ser/Thr protein kinases are activated by autophosphorylation, but the mechanism of this process has not been defined. We determined the crystal structure of a mutant of the Ser/Thr kinase domain (KD) of the mycobacterial sensor kinase PknB in complex with an ATP competitive inhibitor and discovered features consistent with an activation complex. The complex formed an asymmetric dimer, with the G helix and the ordered activation loop of one KD in contact with the G helix of the other. The activation loop of this putative ‘substrate’ KD was disordered, with the ends positioned at the entrance to the partner KD active site. Single amino‐acid substitutions in the G‐helix interface reduced activation‐loop phosphorylation, and multiple replacements abolished KD phosphorylation and kinase activation. Phosphorylation of an inactive mutant KD was reduced by G‐helix substitutions in both active and inactive KDs, as predicted by the idea that the asymmetric dimer mimics a trans‐autophosphorylation complex. These results support a model in which a structurally and functionally asymmetric, ‘front‐to‐front’ association mediates autophosphorylation of PknB and homologous kinases.  相似文献   

9.
Human mitogen-activated protein kinases (MAPK)-interacting kinases 1 and 2 (Mnk1 and Mnk2) target the translational machinery by phosphorylation of the eukaryotic initiation factor 4E (eIF4E). Here, we present the 2.1 A crystal structure of a nonphosphorylated Mnk2 fragment that encompasses the kinase domain. The results show Mnk-specific features such as a zinc binding motif and an atypical open conformation of the activation segment. In addition, the ATP binding pocket contains an Asp-Phe-Asp (DFD) in place of the canonical magnesium binding Asp-Phe-Gly (DFG) motif. The phenylalanine of this motif sticks into the ATP binding pocket and blocks ATP binding as observed with inhibitor bound and, thus, inactive p38 kinase. Replacement of the DFD by the canonical DFG motif affects the conformation of Mnk2, but not ATP binding and kinase activity. The results suggest that the ATP binding pocket and the activation segment of Mnk2 require conformational switches to provide kinase activity.  相似文献   

10.
蛋白激酶C(Protein kinase C,PKC)是细胞内一类重要的Ser/Thr激酶,调控多种生命活动的信号转导过程,目前已发现了至少11种亚型,其结构有一定的保守性而又有所差别,导致其功能和调控的多样性。新合成的PKC一般需要经历活化茎环(Activation-loop,A-loop)、转角模体(Turn motif,TM)以及疏水模体(hydrophobic motif,HM)的程序性磷酸化过程才能成熟,获得进一步活化的功能。本文综述了近年来PKC的程序性磷酸化成熟以及活化的研究进展情况。  相似文献   

11.
Atypical protein kinase C (aPKC) has been implicated in several signaling pathways such as cell polarity, cell survival, and cell differentiation. In contrast to other PKCs, aPKC is unique in having the PB1 (Phox and Bem 1) domain in the N terminus. The aPKC PB1 domain binds with ZIP/p62, Par6, or MEK5 through a PB1-PB1 domain interaction that controls the localization of aPKC. Here, we determined the three-dimensional structure of the PB1 domain of PKCiota by NMR and found that the PB1 domain adopts a ubiquitin fold. The OPCA (OPR, PC, and AID) motif inserted into the ubiquitin fold was presented as a betabetaalpha fold in which the side chains of conserved Asp residues were oriented to the same direction to form an acidic surface. This structural feature suggested that the acidic surface of the PKCiota PB1 domain interacted with the basic surface of the target PB1 domains, and this was confirmed in the case of the PKCiota-ZIP/p62 complex by mutational analysis. Interestingly, in the PKCiota PB1 domain a conserved lysine residue was located on the side opposite to the OPCA motif-presenting surface, suggesting dual roles for the PKCiota PB1 domain in that it could interact with either the conserved lysine residue or the acidic residues on the OPCA motif of the target PB1 domains.  相似文献   

12.
The "eukaryotic-like" receptor Ser/Thr protein kinases (STPKs) are candidates for the sensors that mediate environmental adaptations of Mycobacterium tuberculosis (Mtb). To define the mechanisms of regulation and substrate recognition, we determined the crystal structure of the ligand-free, activated kinase domain (KD) of the Mtb STPK, PknE. Remarkably, the PknE KD formed a dimer similar to that first observed in the structure of the ATPgammaS complex of the Mtb paralog, PknB. This structural similarity, which occurs despite little sequence conservation between the PknB and PknE dimer interfaces, supports the idea that dimerization regulates the Mtb receptor STPKs. Insertion of the DFG motif into the ATP-binding site and other conformational differences compared the ATPgammaS:PknB complex suggest that apo-PknE is not pre-organized to bind nucleotides. This structure may represent an inactive conformation stabilized by dimerization or, alternatively, an active conformation that reveals shifts that mediate nucleotide exchange and order substrate binding.  相似文献   

13.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   

14.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

15.
Hematopoietic tyrosine phosphatase (HePTP) is a 38kDa class I non-receptor protein tyrosine phosphatase (PTP) that is strongly expressed in T cells. It is composed of a C-terminal classical PTP domain (residues 44-339) and a short N-terminal extension (residues 1-43) that functions to direct HePTP to its physiological substrates. Moreover, HePTP is a member of a recently identified family of PTPs that has a major role in regulating the activity and translocation of the MAP kinases Erk and p38. HePTP binds Erk and p38 via a short, highly conserved motif in its N terminus, termed the kinase interaction motif (KIM). Association of HePTP with Erk via the KIM results in an unusual, reciprocal interaction between the two proteins. First, Erk phosphorylates HePTP at residues Thr45 and Ser72. Second, HePTP dephosphorylates Erk at PTyr185. In order to gain further insight into the interaction of HePTP with Erk, we determined the structure of the PTP catalytic domain of HePTP, residues 44-339. The HePTP catalytic phosphatase domain displays the classical PTP1B fold and superimposes well with PTP-SL, the first KIM-containing phosphatase solved to high resolution. In contrast to the PTP-SL structure, however, HePTP crystallized with a well-ordered phosphate ion bound at the active site. This resulted in the closure of the catalytically important WPD loop, and thus, HePTP represents the first KIM-containing phosphatase solved in the closed conformation. Finally, using this structure of the HePTP catalytic domain, we show that both the phosphorylation of HePTP at Thr45 and Ser72 by Erk2 and the dephosphorylation of Erk2 at Tyr185 by HePTP require significant conformational changes in both proteins.  相似文献   

16.
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 ?, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.  相似文献   

17.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.  相似文献   

18.
Huse M  Chen YG  Massagué J  Kuriyan J 《Cell》1999,96(3):425-436
Activation of the type I TGFbeta receptor (TbetaR-I) requires phosphorylation of a regulatory segment known as the GS region, located upstream of the serine/threonine kinase domain in the cytoplasmic portion of the receptor. The crystal structure of a fragment of unphosphorylated TbetaR-I, containing both the GS region and the catalytic domain, has been determined in complex with the FK506-binding protein FKBP12. TbetaR-I adopts an inactive conformation that is maintained by the unphosphorylated GS region. FKBP12 binds to the GS region of the receptor, capping the TbetaR-II phosphorylation sites and further stabilizing the inactive conformation of TbetaR-I. Certain structural features at the catalytic center of TbetaR-I are characteristic of tyrosine kinases rather than Ser/Thr kinases.  相似文献   

19.
Atypical protein kinase C-iota (aPKCiota) plays an important role in mitogenic signaling, actin cytoskeleton organization, and cell survival. Apart from the differences in the regulatory domain, the catalytic domain of aPKCiota differs considerably from other known kinases, because it contains a modification within the glycine-rich loop motif (GXGXXG) that is found in the nucleotide-binding fold of virtually all nucleotide-binding proteins including PKCs, Ras, adenylate kinase, and the mitochondrial F1-ATPase. We have used site-directed mutagenesis and kinetic analysis to investigate whether these sequence differences affect the nucleotide binding properties and catalytic activity of aPKCiota. When lysine 274, a residue essential for ATP binding and activity conserved in most protein kinases, was replaced by arginine (K274R mutant), aPKCiota retained its normal kinase activity. This is in sharp contrast to results published for any other PKC or even distantly related kinases like phosphoinositide 3-kinase gamma, where the same mutation completely abrogated the kinase activity. Furthermore, the sensitivity of aPKCiota for inhibition by GF109203X, a substance acting on the ATP-binding site, was not altered in the K274R mutant. In contrast, replacement of Lys-274 by tryptophan (K274W) completely abolished the kinase activity of PKCiota. In accordance with results obtained with other kinase-defective PKC mutants, in cultured cells aPKCiota-K274W acted in a dominant negative fashion on signal transduction pathways involving endogenous aPKCiota, whereas the effect of the catalytically active K274R mutant was identical to the wild type enzyme. In summary, aPKCiota differs from classical and novel PKCs also in the catalytic domain. This information could be of significant value for the development of specific inhibitors of aPKCiota as a key factor in central signaling pathways.  相似文献   

20.
MAP kinase phosphatase 5 (MKP5) is a member of the mitogen-activated protein kinase phosphatase (MKP) family and selectively dephosphorylates JNK and p38. We have determined the crystal structure of the catalytic domain of human MKP5 (MKP5-C) to 1.6 A. In previously reported MKP-C structures, the residues that constitute the active site are seriously deviated from the active conformation of protein tyrosine phosphatases (PTPs), which are accompanied by low catalytic activity. High activities of MKPs are achieved by binding their cognate substrates, representing substrate-induced activation. However, the MKP5-C structure adopts an active conformation of PTP even in the absence of its substrate binding, which is consistent with the previous results that MKP5 solely possesses the intrinsic activity. Further, we identify a sequence motif common to the members of MKPs having low catalytic activity by comparing structures and sequences of other MKPs. Our structural information provides an explanation of constitutive activity of MKP5 as well as the structural insight into substrate-induced activation occurred in other MKPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号