共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The peripheral nervous system (PNS) of Drosophila offers a powerful system to precisely identify individual cells and dissect their genetic pathways of development. The mode of specification of a subset of larval PNS cells, the multiple dendritic (md) neurons (or type II neurons), is complex and still poorly understood. Within the dorsal thoracic and abdominal segments, two md neurons, dbd and dda1, apparently require the proneural gene amos but not atonal (ato) or Achaete-Scute-Complex (ASC) genes. ASC normally acts via the neural selector gene cut to specify appropriate sensory organ identities. Here, we show that dbd- and dda1-type differentiation is suppressed by cut in dorsal ASC-dependent md neurons. Thus, cut is not only required to promote an ASC-dependent mode of differentiation, but also represses an ASC- and ato-independent fate that leads to dbd and dda1 differentiation. 相似文献
3.
El-Hashash AH Turcatel G Al Alam D Buckley S Tokumitsu H Bellusci S Warburton D 《Development (Cambridge, England)》2011,138(7):1395-1407
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium. 相似文献
4.
Bayesian analysis of signaling networks governing embryonic stem cell fate decisions 总被引:5,自引:0,他引:5
Woolf PJ Prudhomme W Daheron L Daley GQ Lauffenburger DA 《Bioinformatics (Oxford, England)》2005,21(6):741-753
MOTIVATION: Signaling events that direct mouse embryonic stem (ES) cell self-renewal and differentiation are complex and accordingly difficult to understand in an integrated manner. We address this problem by adapting a Bayesian network learning algorithm to model proteomic signaling data for ES cell fate responses to external cues. Using this model we were able to characterize the signaling pathway influences as quantitative, logic-circuit type interactions. Our experimental dataset includes measurements for 28 signaling protein phosphorylation states across 16 different factorial combinations of cytokine and matrix stimuli as reported previously. RESULTS: The Bayesian network modeling approach allows us to uncover previously reported signaling activities related to mouse ES cell self-renewal, such as the roles of LIF and STAT3 in maintaining undifferentiated ES cell populations. Furthermore, the network predicts novel influences such as between ERK phosphorylation and differentiation, or RAF phosphorylation and differentiated cell proliferation. Visualization of the influences detected by the Bayesian network provides intuition about the underlying physiology of the signaling pathways. We demonstrate that the Bayesian networks can capture the linear, nonlinear and multistate logic interactions that connect extracellular cues, intracellular signals and consequent cell functional responses. 相似文献
5.
Patricia Green Amelia Y. Hartenstein Volker Hartenstein 《Cell and tissue research》1993,273(3):583-598
We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a rosette pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination. 相似文献
6.
Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system 总被引:1,自引:0,他引:1
下载免费PDF全文

Whereas vertebrate achaete-scute complex (as-c) and atonal (ato) homologs are required for neurogenesis, their neuronal determination activities in the central nervous system (CNS) are not yet supported by loss-of-function studies, probably because of genetic redundancy. Here, to address this problem, we generated mice double mutant for the as-c homolog Mash1 and the ato homolog Math3. Whereas in Mash1 or Math3 single mutants neurogenesis is only weakly affected, in the double mutants tectal neurons, two longitudinal columns of hindbrain neurons and retinal bipolar cells were missing and, instead, those cells that normally differentiate into neurons adopted the glial fate. These results indicated that Mash1 and Math3 direct neuronal versus glial fate determination in the CNS and raised the possibility that downregulation of these bHLH genes is one of the mechanisms to initiate gliogenesis. 相似文献
7.
The maintenance of organs and their regeneration in case of injury are crucial to the survival of all animals. High rates of tissue turnover and nearly unlimited regenerative capabilities make planarian flatworms an ideal system with which to investigate these important processes, yet little is known about the cell biology and anatomy of their organs. Here we focus on the planarian excretory system, which consists of internal protonephridial tubules. We find that these assemble into complex branching patterns with a stereotyped succession of cell types along their length. Organ regeneration is likely to originate from a precursor structure arising in the blastema, which undergoes extensive branching morphogenesis. In an RNAi screen of signaling molecules, we identified an EGF receptor (Smed-EGFR-5) as a crucial regulator of branching morphogenesis and maintenance. Overall, our characterization of the planarian protonephridial system establishes a new paradigm for regenerative organogenesis and provides a platform for exploring its functional and evolutionary homologies with vertebrate excretory systems. 相似文献
8.
9.
The thoracic integument of the adult fruit fly is a relatively simple but highly patterned structure. It is composed of sensory organ cells distributed within a monolayer of epidermal cells. Both cell types are easily detected at the cuticular surface, as each external sense organ forms a sensory bristle and each epidermal cell secretes a small nonsensory hair. Inhibitory cell—cell interactions play a key role in regulating the distribution as well as the formation of the sense organs. This review focuses on the role of these cell—cell interactions in the adoption of alternative cell fates. We also show that Notch, Hairless, and Suppressor of Hairless, three components of this intercellular signaling pathway, exhibit dose-dependent genetic interactions. Finally we address how this intercellular signaling mechanism may be modulated to result in highly reproducible outcomes. © 1996 Wiley-Liss, Inc. 相似文献
10.
11.
The role of cellular interactions in determining the fates of two identified motoneurons in the embryonic zebrafish was investigated by transplanting individual motoneurons from labeled donor embryos to unlabeled hosts. The results suggest that although these cells normally adopt different fates, they form an equivalence group in which one fate is primary and the other is secondary. Both cells are able to adopt the primary fate. A cell that has adopted the secondary fate can be induced to switch to the primary fate by ablating the cell that has adopted the primary fate, even many hours after axogenesis. Although interactions between the two cells appear to regulate which cell adopts the secondary fate, these interactions seem to be independent of neuromuscular activity. 相似文献
12.
Unlike in animals, female gametes of flowering plants are not the direct products of meiosis but develop from a functional megaspore after three rounds of free mitotic divisions. After nuclei migration and positioning, the eight-nucleate syncytium differentiates into the embryo sac, which contains two female gametes as well as accessory cells at the micropylar and chalazal pole, respectively. We report that an egg-cell-specific gene, ZmEAL1, is activated at the micropylar pole of the eight-nucleate syncytium. ZmEAL1 translation is restricted to the egg cell, resulting in the generation of peptide-containing vesicles directed toward its chalazal pole. RNAi knockdown studies show that ZmEAL1 is required for robust expression of the proliferation-regulatory gene IG1 at the chalazal pole of the embryo sac in antipodal cells. We further show that ZmEAL1 is required to prevent antipodal cells from adopting central cell fate. These findings show how egg cells orchestrate differentiation of the embryo sac. 相似文献
13.
Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation 总被引:1,自引:0,他引:1
Feng GS 《Cell research》2007,17(1):37-41
14.
The Drosophila CNS derives from a population of neural stem cells, called neuroblasts (NBs), which delaminate individually from the neurogenic region of the ectoderm. In the embryonic ventral nerve cord each NB can be uniquely identified and gives rise to a specific lineage consisting of neurons and/or glial cells. This 'NB identity' is dependent on the position of the progenitor cells in the neuroectoderm before delamination. The positional information is provided by the products of segment polarity and dorsoventral (D/V) patterning genes. Subsequently, 'cell fate genes' like huckebein (hkb) and eagle (eg) contribute to the generation of specific NB lineages. These genes act downstream of segment polarity and D/V patterning genes and regulate different processes such as the generation of glial cells and the determination of serotonergic neurons. 相似文献
15.
Many molecules induce the ectopic expression of tissue-specific genes in Xenopus embryos. Conversely, interfering with their activity disrupts patterns of gene expression, implicating them in normal development. Does this mean that they control cell fate (i.e. position, as well as differentiation)? Xsox17alpha and beta can induce ectopic expression of endodermal markers; inhibiting their function suppresses expression of endodermal marker genes in the developing gut (Cell 91 (1997) 397). Here we show the effect of these manipulations on cell lineage. Expressing Xsox17 in a cells normally fated to become ectoderm causes their descendants either to relocate into the embryonic gut or to die at a late developmental stage. Conversely, disrupting Xsox17 activity in cells normally fated to be endodermal causes them to enter mesodermal and ectodermal lineages. 相似文献
16.
Parisi S D'Andrea D Lago CT Adamson ED Persico MG Minchiotti G 《The Journal of cell biology》2003,163(2):303-314
The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process. 相似文献
17.
J Chang I O Kim J S Ahn S H Kim 《The International journal of developmental biology》2001,45(5-6):715-724
The spitz class genes, pointed (pnt), rhomboid frho), single-minded (sim), spitz (spi)and Star (S), as well as the Drosophila epidermal growth factor receptor (Egfr) signaling genes, argos (aos), Egfr, orthodenticle (otd) and vein (vn), are required for the proper establishment of ventral neuroectodermal cell fate. The roles of the CNS midline cells, spitz class and Egfr signaling genes in cell fate determination of the ventral neuroectoderm were determined by analyzing the spatial and temporal expression patterns of each individual gene in spitz class and Egfr signaling mutants. This analysis showed that the expression of all the spitz class and Egfrsignaling genes is affected by the sim gene, which indicates that sim acts upstream of all the spitz class and Egfr signaling genes. It was shown that overexpression of sim in midline cells fails to induce the ectodermal fate in the spi and Egfr mutants. On the other hand, overexpression of spi and Draf causes ectopic expression of the neuroectodermal markers in the sim mutant. Ectopic expression of sim in the en-positive cells induces the expression of downstream genes such as otd, pnt, rho, and vn, which clearly demonstrates that the sim gene activates the EGFR signaling pathway and that CNS midline cells, specified by sim, provide sufficient positional information for the establishment of ventral neuroectodermal fate. These results reveal that the CNS midline cells are one of the key regulators for the proper patterning of the ventral neuroectoderm by controlling EGFR activity through the regulation of the expression of spitz class genes and Egfr signaling genes. 相似文献
18.
Ng RK Dean W Dawson C Lucifero D Madeja Z Reik W Hemberger M 《Nature cell biology》2008,10(11):1280-1290
19.
We have analyzed the contributions made by maternal and zygotic genes to the establishment of the expression patterns of four zygotic patterning genes: decapentaplegic (dpp), zerknüllt (zen), twist (twi), and snail (sna). All of these genes are initially expressed either dorsally or ventrally in the segmented region of the embryo, and at the poles. In the segmented region of the embryo, correct expression of these genes depends on cues from the maternal morphogen dorsal (dl). The dl gradient appears to be interpreted on three levels: dorsal cells express dpp and zen, but not twi and sna; lateral cells lack expression of all four genes; ventral cells express twi and sna, but not dpp and zen. dl appears to activate the expression of twi and sna and repress the expression of dpp and zen. Polar expression of dpp and zen requires the terminal system to override the repression by dl, while that of twi and sna requires the terminal system to augment activation by dl. The zygotic expression patterns established by the maternal genes appear to specify autonomous domains that carry out independent developmental programs, insofar as mutations in the genes that are expressed ventrally do not affect the initiation or ontogeny of the expression patterns of the genes that are expressed dorsally, and vice versa. However, interactions between the zygotic genes specific to a particular morphological domain appear to be important for further elaboration of the three levels specified by dl. Two of the genes, dpp and twi, are unaffected by mutations in any of the tested zygotic dorsal-ventral genes, suggesting that dpp and twi are the primary patterning genes for dorsal ectoderm and mesoderm, respectively. 相似文献