首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unicellular eukaryote Chlamydomonas reinhardtii is a phototactic alga that swims toward or away from light, using rhodopsin as the photopigment. The activity of retinal analogues was tested in the mutant FN68, which has high phototactic sensitivity only after incubation with retinal or analogues of retinal. Analogues prevented from isomerizing about the 7-ene, 9-ene, 11-ene, 13-ene, or 15-ene (C = N+H) bonds retained full activity. Also, bleaching, protonation of the N, and a stable geometrically altered chromophore are not required for full activity. An attractive hypothesis is that charge redistribution in the excited state of retinal directly triggers the activity of rhodopsin.  相似文献   

2.
3.
Although structurally similar to pancreatic lipase (PL), the key enzyme of intestinal fat digestion, pancreatic lipase-related protein type 2 (PLRP2) differs from PL in certain functional properties. Notably, PLRP2 has a broader substrate specificity than PL, and unlike that of PL, its activity is not restored by colipase in the presence of bile salts. In the studies presented here, the activation mechanism of horse PLRP2 was studied through active site-directed inhibition experiments, and the results demonstrate fundamental differences with that of PL. The opening of the horse PLRP2 flap occurs as soon as bile salt monomers are present, is accelerated in the presence of micelles, and does not require the presence of colipase. Moreover, in contrast to PL, horse PLRP2 is able to directly interact with a bile salt micelle to form an active binary complex, without the micelle being presented by colipase, as evidenced by molecular sieving experiments. These findings, together with the sensitivity of the horse PLRP2 flap to partial proteolysis, are indicative of a higher flexibility of the flap of horse PLRP2 relative to PL. From these results, it can be concluded that PLRP2 can adopt an active conformation in the intestine, which could be important for the further understanding of the physiological role of PLRP2. Finally, this work emphasizes the essential role of colipase in lipase catalysis at the lipid-water interface in the presence of bile.  相似文献   

4.
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.  相似文献   

5.
Cholera toxin (CT) and related AB(5) toxins bind to glycolipids at the plasma membrane and are then transported in a retrograde manner, first to the Golgi and then to the endoplasmic reticulum (ER). In the ER, the catalytic subunit of CT is translocated into the cytosol, resulting in toxicity. Using fluorescence microscopy, we found that CT is internalized by multiple endocytic pathways. Inhibition of the clathrin-, caveolin-, or Arf6-dependent pathways by overexpression of appropriate dominant mutants had no effect on retrograde traffic of CT to the Golgi and ER, and it did not affect CT toxicity. Unexpectedly, when we blocked all three endocytic pathways at once, although fluorescent CT in the Golgi and ER became undetectable, CT-induced toxicity was largely unaffected. These results are consistent with the existence of an additional retrograde pathway used by CT to reach the ER.  相似文献   

6.
Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.  相似文献   

7.
8.
Forskolin, a novel diterpene activator of adenylate cyclase in membranes and intact cells, activates the enzyme in membranes from mutant cyc-S49 murine lymphoma cells and the soluble enzyme from rat testes. Each of these enzymes consists only of the catalytic subunit and does not have a functional guanine nucleotide-binding protein. In both cases forskolin converts the manganese-dependent enzymes to a form which does not require manganese for activity. Forskolin can also stimulate a detergent-solubilized preparation of adenylate cyclase from rat cerebral cortex. Activation of adenylate cyclase by forskolin is therefore not dependent on a perturbation of membrane structure nor does it require a functional guanine nucleotide-binding subunit.  相似文献   

9.
Murine T cell hybridomas were used to examine the requirements for processing and presentation of human fibrinogen. In contrast to most protein Ag, fibrinogen (Mr 340,000) did not need to be processed by an APC, inasmuch as intact fibrinogen was presented by both pre-fixed and chloroquine-treated macrophages. Through the use of a variety of protease inhibitors, no involvement of proteases either on the macrophage surface or in the culture medium in the presentation of fibrinogen was observed. The epitope recognized by two T cell hybridomas was localized to the peptide, A alpha (551-578), which was located on the carboxy portion of the A alpha-chain. This portion of the A alpha-chain has no defined secondary structure and must possess the conformational flexibility which allows it to directly associate with an I-Ek molecule. Thus conformational flexibility may be a major factor in determining the processing requirements of a protein Ag.  相似文献   

10.
Yeast thermotolerance does not require protein synthesis.   总被引:16,自引:5,他引:11       下载免费PDF全文
Heat shock at 37 degrees C induces synthesis of stress (heat shock) proteins in Saccharomyces cerevisiae and also induces thermotolerance. Amino acid analogs that are powerful inducers of stress protein synthesis failed to induce thermotolerance, suggesting that the stress proteins do not play a causal role in acquired thermotolerance at 37 degrees C. This suggestion was confirmed by the observation that protein synthesis was not required for the induction of thermotolerance at 37 degrees C.  相似文献   

11.
Lipofection does not require the removal of serum.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

12.
13.
Apoptotic cell death often requires caspases. Caspases are part of a family of related molecules including also paracaspases and metacaspases. Are molecules of this family generally involved in cell death? More specifically, do non-apoptotic caspase-independent types of cell death require paracaspases or metacaspases? Dictyostelium discoideum lends itself well to answering these questions because 1) it undergoes non-apoptotic developmental cell death of a vacuolar autophagic type and 2) it bears neither caspase nor metacaspase genes and apparently only one paracaspase gene. This only paracaspase gene can be inactivated by homologous recombination. Paracaspase-null clones were thus obtained in each of four distinct Dictyostelium strains. These clones were tested in two systems, developmental stalk cell death in vivo and vacuolar autophagic cell death in a monolayer system mimicking developmental cell death. Compared with parent cells, all of the paracaspase-null cells showed unaltered cell death in both test systems. In addition, paracaspase inactivation led to no alteration in development or interaction with a range of bacteria. Thus, in Dictyostelium, vacuolar programmed cell death in development and in a monolayer model in vitro would seem not to require paracaspase. To our knowledge, this is the first instance of developmental programmed cell death shown to be independent of any caspase, paracaspase or metacaspase. These results have implications as to the relationship in evolution between cell death and the caspase family.  相似文献   

14.
Recent reports revive an earlier hypothesis by specifically proposing that the formation of the first bacterial luciferase intermediate involves the complete oxidation of reduced riboflavin 5′-phosphate and the reduction of an enzyme disulfide to dithiol. Optical measurements show that the flavin stays reduced after binding to luciferase under anaerobic conditions. Diagonal paper electrophoresis also demonstrates that native luciferase does not contain any disulfide bonds. Furthermore, the recovery of active luciferase from unfolded subunits requires the presence of high concentrations of dithiothreitol, a disulfide-reducing reagent.  相似文献   

15.
Xenopus oocyte maturation does not require new cyclin synthesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Progesterone induces fully grown, stage VI, Xenopus oocytes to pass through meiosis I and arrest in metaphase of meiosis II. Protein synthesis is required twice in this process: in order to activate maturation promoting factor (MPF) which induces meiosis I, and then again after the completion of meiosis I to reactivate MPF in order to induce meiosis II. We have used antisense oligonucleotides to destroy maternal stores of cyclin mRNAs, and demonstrate that new cyclin synthesis is not required for entry into either meiosis I or II. This finding is consistent with the demonstration that stage VI oocytes contain a store of B-type cyclin polypeptides (Kobayashi, H., J. Minshull, C. Ford, R. Golsteyn, R. Poon, and T. Hunt. 1991. J. Cell Biol. 114:755-765). Although approximately 70% of cyclin B2 is destroyed at first meiosis, the surviving fraction, together with a larger pool of surviving cyclin B1, must be sufficient to allow the reactivation of MPF and induce entry into second meiotic metaphase. Since stage VI oocytes do not contain any cyclin A, our results show that cyclin A is not required for meiosis in Xenopus. We discuss the possible nature of the proteins whose synthesis is required to induce meiosis I and II.  相似文献   

16.
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.  相似文献   

17.
Gelsolin requires activation to carry out its severing and capping activities on F-actin. Here, we present the structure of the isolated C-terminal half of gelsolin (G4-G6) at 2.0 A resolution in the presence of Ca(2+) ions. This structure completes a triptych of the states of activation of G4-G6 that illuminates its role in the function of gelsolin. Activated G4-G6 displays an open conformation, with the actin-binding site on G4 fully exposed and all three type-2 Ca(2+) sites occupied. Neither actin nor the type-l Ca(2+), which normally is sandwiched between actin and G4, is required to achieve this conformation.  相似文献   

18.
Glucose addition to a stationary culture of wild-type Saccharomyces cerevisiae BY4742 cells with zero activity of MDR pumps resuspended in a fresh medium causes pump resynthesis (measured as pump-effected diS-C3(3) efflux). In a stationary culture in its original growth medium, this glucose-induced pump resynthesis fails to occur due to depletion of essential nutrients or to extracellular metabolites produced by cells during growth. Direct pump inactivation by metabolites is excluded since exponential cells with high MDR pump activity cultured in a medium with high concentration of extracellular metabolites retain this activity for at least 2 h. The metabolites also do not affect pump synthesis on the level of gene expression as addition of concentrated growth medium or an amino acid mixture to stationary cells in spent growth medium restores glucose-induced pump synthesis. The block of MDR pump synthesis is therefore due to the lack of essential nutrients in spent medium.  相似文献   

19.
Nikolai Engedal 《Autophagy》2016,12(2):439-441
To investigate the role of LC3 in bulk autophagy we compared its autophagic-lysosomal processing (using an improved quantitative immunoblotting method) with autophagic-lysosomal bulk cargo flux (measured by our established LDH [lactate dehydrogenase] sequestration assay) in amino acid-starved rat hepatocytes treated with cycloheximide to prevent new LC3 influx. Block-release experiments with the reversible autophagy inhibitors 3-methyladenine (3MA) and thapsigargin (TG) showed that while only 3MA suppressed phagophoric LC3 attachment (lipidation), both inhibitors prevented phagophore closure (cargo sequestration). Upon release from closure blockade, some autophagic-lysosomal LC3 flux was resumed even in the presence of 3MA, i.e., without an accompanying bulk cargo flux. Conversely, whereas the autophagic-lysosomal flux of LC3 halted within ~100 min of cycloheximide treatment, the bulk cargo flux continued at a high rate. siRNA-mediated knockdown of LC3 family proteins in LNCaP prostate carcinoma cells confirmed that autophagy of cytoplasmic bulk cargo was completely LC3 independent also in these cells, and in the absence of cycloheximide. However, a strong requirement for GABARAP family proteins was evident. Since bulk autophagy of cytoplasm (macroautophagy) and autophagic-lysosomal LC3 processing may apparently be mutually independent, LC3 would seem to be unsuitable as a general indicator of autophagy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号