首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.  相似文献   

2.
Acer pseudoplatanus L. trees were grown in sand culture for 2 years and, in 1988, supplied with either 1.0 mol N m-3 (low N) or 6.0 mol N m-3 (high N) to precondition their growth. In 1989, the same trees received either high or low nitrogen, producing four treatments; High N in 1988/High N in 1989; High N in 1988/Low N in 1989; Low N in 1988/Low N in 1989; and Low N in 1988/High N in 1989. Plant growth was affected by N supply in both years. In 1989 the Low N/High N treated trees had the same overall mass, leaf mass and stem girth as the High N/High N treatment. Early spring growth of foliage and roots was conditional on nitrogen supplied in the previous season. Later, the rapid increases in leaf, stem and root growth under high N was through root uptake. Internal partitioning of growth was affected, with the Low N/High N treatment producing more new leaves on axillary shoots, and more new white roots on existing structures, than the Low N/Low N treatment. Despite effects of the N preconditioning on the structure of both canopy and root system, nitrogen uptake was solely dependent on the current nitrogen supply.  相似文献   

3.
硝态氮(NO3^—)对水稻侧根生长及其氮吸收的影响   总被引:6,自引:0,他引:6  
侧根是植物吸收利用土壤养分的重要器官 ,其生长发育受内部遗传因子和外部环境矿质养分的影响。通过琼脂分层培养发现 :局部供应NO-3 可以诱导水稻 (OryzasativaL .)主根或不定根上侧根的生长。为研究旱种条件下NO-3 对水稻侧根发育及其N吸收的影响 ,设置了 3个蛭石培养实验 :分根处理、全株缺N、全株供N处理。分根处理 (一半根系供应 3mmol/LKNO3,另一半根系供应 3mmol/LKCl)结果表明 :局部供应NO-3 能够促进水稻侧根生长。而在全株处理下 ,N饥饿诱导了侧根的伸长。水稻根系对NO-3 的这两种反应都存在着显著的基因型差异。同时对地上部N浓度、可溶性总糖含量及N含量分析表明 ,这些生理指标在分根处理与全株加N处理中的差异均不显著 ,表明分根处理也能基本满足植株正常生长对N的需求。在分根处理中 ,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关 ,这表明在养分不均一的介质中 ,侧根长度对水稻N素吸收具有十分重要的作用。而在N素充足的条件下 ,两者之间的相关性并不显著 ,这暗示在养分充足的环境下 ,侧根长度可能并不是决定根系吸收N素的主要因素  相似文献   

4.
侧根是植物吸收利用土壤养分的重要器官,其生长发育受内部遗传因子和外部环境矿质养分的影响.通过琼脂分层培养发现:局部供应NO-3可以诱导水稻( Oryza sativa L.)主根或不定根上侧根的生长.为研究旱种条件下NO-3对水稻侧根发育及其N吸收的影响,设置了3个蛭石培养实验:分根处理、全株缺N、全株供N处理.分根处理(一半根系供应3 mmol/L KNO3,另一半根系供应3 mmol/L KCl)结果表明:局部供应NO-3 能够促进水稻侧根生长.而在全株处理下,N饥饿诱导了侧根的伸长.水稻根系对NO-3的这两种反应都存在着显著的基因型差异.同时对地上部N浓度、可溶性总糖含量及N含量分析表明,这些生理指标在分根处理与全株加N处理中的差异均不显著,表明分根处理也能基本满足植株正常生长对N的需求.在分根处理中,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关,这表明在养分不均一的介质中,侧根长度对水稻N素吸收具有十分重要的作用.而在N素充足的条件下,两者之间的相关性并不显著,这暗示在养分充足的环境下,侧根长度可能并不是决定根系吸收N素的主要因素.  相似文献   

5.
Xu  Xinjian  Timmer  Victor R. 《Plant and Soil》1998,203(2):313-322
Containerized Chinese fir (Cunninghamia lanceolata (Lamb) Hook) were reared from seed at four fertilizer levels (0, 15, 45, 75 mg N seedling-1 season-1) and two topdressing schedules (conventional or exponential) for a 22-week greenhouse rotation to assess growth, nutrition and nutrient loading capacity of seedlings. Extra P supplemented high fertilization (or nutrient loading) treatments to test for induced deficiency of this element. The schedule and rate of fertilization significantly affected growth and nutrient dynamics of the seedlings. Steady-state nutrition and superior growth performance were achieved by seedlings fertilized exponentially at the operational dose (15 mg N), yielding 23, 72 and 52% more in respective biomass, N uptake and P uptake than seedlings fertilized conventionally at the equivalent dose. The improved growth and fertilizer efficiency were attributed to close synchronization of exponential nutrient supply with exponential growth and nutrient demand of plants. High dose exponential fertilization (45 and 75 mg N) induced steady state-nutrition late in the season, increasing seedling N and P uptake by 72–83% and 50–96% compared to low dose exponential fertilization, demonstrating effective nutrient loading of plants without changing biomass. The extra P stimulated P uptake without altering growth or N uptake, thus P was probably not limiting during the greenhouse culture despite high N additions.  相似文献   

6.
The rate of N uptake of crops is highly variable during crop development and between years and sites. However, under ample soil N availability, crop N accumulation is highly related to crop growth rate and to biomass accumulation. Critical N concentration has been defined as the minimum N concentration which allows maximum growth rate. Critical N concentration declines during crop growth. The relationship between critical N concentration and biomass accumulation over the growth period of a crop is broadly similar within major C(3) and C(4) cultivated species. Therefore, the critical N concentration concept is widely used in agronomy as the basis of the diagnosis of crop N status, and allows discrimination between situations of sub-optimal and supra-optimal N supply. The relationship between N and biomass accumulation in crops, relies on the interregulation of multiple crop physiological processes. Among these processes, N uptake, crop C assimilation and thus growth rate, and C and N allocation between organs and between plants, play a particular role. Under sub-optimal N supply, N uptake of the crop depends on soil mineral N availability and distribution, and on root distribution. Under ample N supply, N uptake largely depends on growth rate via internal plant regulation. Carbon assimilation of the crop is related to crop N through the distribution of N between mature leaves with consequences for leaf and canopy photosynthesis. However, although less commonly emphasized, carbon assimilation of the crop also depends on crop N through leaf area development. Therefore, crop growth rate fundamentally relies on the balance of N allocation between growing and mature leaves. Nitrogen uptake and distribution also depends on C allocation between organs and N composition of these organs. Within shoots, allocation of C to stems generally increases in relation to C allocation to the leaves over the crop growth period. Allocation of C and N between shoots and roots also changes to a large extent in relation to soil N and/or crop N. These alterations in C and N allocation between plant organs have implications, together with soil availability and carbon assimilation, on N uptake and distribution in crops. Therefore, N uptake and distribution in plants and crops involves many aspects of growth and development. Regulation of nitrogen assimilation needs to be considered in the context of these interregulatory processes.  相似文献   

7.
Potatoes were grown on two contrasting soils but in adjacent sites to investigate the effect of soil type on tuber production, nutrient uptake and nutrient inflow rates (uptake rate per unit length of root). The year of the study was wetter than normal. Tuber growth, root growth and nutrient uptake were all greater on the coarse rather than the fine-textured soil. However there was no difference in nutrient inflow rates between plants growing in the two soils. Therefore, it was concluded that the crop on the finer textured soil did not have an adequate nutrient supply, particularly of N, relative to the crop on the coarser-textured soil. The reasons for the low supply of nitrogen in the fine textured soil are not clear, but it might have been due to the smaller root system or to enhanced losses of nitrogen by denitrification caused by the combination of soil physical properties and poor drainage in a wet year.  相似文献   

8.
分别对9年生与13年生刨花楠林木叶片氮磷养分之间关系及林木生物量相对生长速率与叶片碳氮磷化学计量比关系进行分析,探讨不同相对生长速率下的林木叶片N、P养分适应特征,并检验相对生长速率假说理论对刨花楠树种的适应性。结果表明:两种年龄刨花楠林木生物量相对生长速率、叶片C、N、P含量及其计量比值均存在显著差异;同一年龄的林木叶片N、P之间存在显著相关性,二者具有协同相关性;9年生林木叶片P含量及C∶P、N∶P与生物量相对生长速率呈二次曲线相关,而13年生林木叶片N、P含量及C∶N、C∶P、N∶P则与生物量相对生长速率均呈线性相关。研究表明,在能满足植物生长所需养分供给的土壤环境中,叶片N、P含量与林木相对生长速率间呈线性正相关,但当土壤中养分供应满足不了植物高速生长时,植物则会对有限的养分资源进行适应性调整。  相似文献   

9.
藜个体在高密度种群中的氮素利用效率   总被引:4,自引:0,他引:4       下载免费PDF全文
 氮素利用效率(NUE)是植物养分策略研究中的一项重要内容。该文利用Berendse和Aerts提出的氮素利用效率概念和原理研究了高密度的藜(Chenopodium album)种群中不同植物个体在种内竞争条件下的氮素利用效率。结果表明,由于植株的氮素吸收速率与其个体大小成非线性关系,说明不同植株个体对氮素的竞争属于非对称竞争。个体较大的植株氮素输入较高,而个体较小的植株氮素输出较高,因而较大个体植株的氮素净增加也较高。植株的氮素损失随着个体大小的增加而增加,较大植株个体的氮素浓度随着生长而下降,而较小植株个体的氮素浓度随时间的变化不大,说明个体较小的植株的生长受光照的限制比受氮素的限制更大,而对较大的植株个体而言,它们的生长受氮素的限制更大。高密度藜种群中的不同植物个体具有不同的养分策略,氮素利用效率及其组成部分氮素生产力(NP)和氮素滞留时间(MRT)均不同。植株的NP和MRT与其个体大小正相关,较大的植物个体具有较高的NP和较长的MRT,因而氮素利用效率也高于个体较小的植株。在个体水平上,种内不同植株的NP与MRT不存在权衡关系(Trade-off)。因此,Berendse和Aerts提出的氮素利用效率概念不仅适用于研究种间的养分策略,对于研究种内不同植株的养分策略也同样适用。  相似文献   

10.
Witt  C.  Cassman  K.G.  Olk  D.C.  Biker  U.  Liboon  S.P.  Samson  M.I.  Ottow  J.C.G. 《Plant and Soil》2000,225(1-2):263-278
The effects of soil aeration, N fertilizer, and crop residue management on crop performance, soil N supply, organic carbon (C) and nitrogen (N) content were evaluated in two annual double-crop systems for a 2-year period (1994–1995). In the maize-rice (M-R) rotation, maize (Zea mays, L.) was grown in aerated soil in the dry season (DS) followed by rice (Oriza sativa, L.) grown in flooded soil in the wet season (WS). In the continuous rice system (R-R), rice was grown in flooded soil in both the DS and WS. Subplot treatments within cropping-system main plots were N fertilizer rates, including a control without applied N. In the second year, sub-subplot treatments with early or late crop residue incorporation were initiated after the 1995 DS maize or rice crop. Soil N supply and plant N uptake of 1995 WS rice were sensitive to the timing of residue incorporation. Early residue corporation improved the congruence between soil N supply and crop demand although the size of this effect was influenced by the amount and quality of incorporated residue. Grain yields were 13-20% greater with early compared to late residue incorporation in R-R treatments without applied N or with moderate rates of applied N. Although substitution of maize for rice in the DS greatly reduced the amount of time soils remained submerged, the direct effects of crop rotation on plant growth and N uptake in the WS rice crops were small. However, replacement of DS rice by maize caused a reduction in soil C and N sequestration due to a 33–41% increase in the estimated amount of mineralized C and less N input from biological N fixation during the DS maize crop. As a result, there was 11–12% more C sequestration and 5–12% more N accumulation in soils continuously cropped with rice than in the M-R rotation with the greater amounts sequestered in N-fertilized treatments. These results document the capacity of continuous, irrigated rice systems to sequester C and N during relatively short time periods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Silla F  Escudero A 《Oecologia》2003,136(1):28-36
Nitrogen uptake, nitrogen demand and internal nitrogen cycling were studied to address the question of the importance of nutrient storage in Quercus species with contrasting leaf longevities. We carried out this study at the whole-plant level with young trees (2-4 years old) of three Mediterranean Quercus species: the evergreen Q. ilex, the marcescent/evergreen Q. faginea, and the deciduous Q. pyrenaica. Seasonal dynamics of nitrogen in all compartments of the plant were followed for 3 years. Nitrogen losses were measured through litter production, herbivory and fine root shedding. Nitrogen uptake was estimated using increments of nitrogen plant content plus accumulative nitrogen losses. Nitrogen uptake was limited to a few months during late winter and spring. Before budbreak, acquired nitrogen was stored in old-leaf cohorts of evergreen and woody compartments. After budbreak, Quercus species relied first on soil uptake and second on nitrogen retranslocation to supply new growth requirements. However, in most cases we found a high asynchrony between nitrogen demand by growing tissues and soil supply, which determined a strong nitrogen retranslocation up to 88.4% of the nitrogen demand throughout leaf expansion. Except for the first year after planting, the above- and underground woody fractions provided more nitrogen to the new tissues than the old leaf cohorts. Differences in the benefit of nitrogen withdrawn from senescent and old leaves were not found between species. We conclude that sink/source interaction strength was determined by differences between nitrogen demand and uptake, regulating internal nutrient cycling at the whole plant level.  相似文献   

12.
The effect of N supply on plant growth and leaf demography of a deciduous and an evergreen Ericaceae was studied in relation to their internal cycling of N. Mature ramets of Vaccinium myrtillus (deciduous) and Vaccinium vitis-idaea (evergreen) were established in sand culture for 1 year with an adequate supply of a balanced nutrient solution. During one growing season, the plants were given two levels of N supply enriched with 15N and eight sequential destructive harvests were taken. Recovery of unlabelled N in the new shoot was used to determine the remobilization of N from storage. Initially, growth was unaffected by N supply. After May, High N enhanced growth for both species but the nature of their growth response differed. For both species, new shoot biomass and leaf number increased but root biomass production was affected for V. myrtillus only. Whole plant biomass production was similar for both species under High N, but was greater for V. vitis-idaea under Low N. The amount of N remobilized to support new shoot growth was similar for the two species and was independent of N current supply. N was remobilized predominantly from previous year leaves for V. vitis-idaea and from previous year stems and roots for V. myrtillus. The contribution of remobilization to new shoot N was similar for the two species, but depended on N supply. Remobilization was faster in V. myrtillus, but lasted longer in V. vitis-idaea. The results are discussed in relation to species growth in N-poor environments, focusing on the extent to which species-differences in the dynamic of N remobilization and growth may explain their adaptation to constant and/or changeable N supply.  相似文献   

13.
The building and use of internal N stores in the grass Calamagrostis epigejos was investigated in context of complex ecological study focused on mechanisms underlying competitive ability of this highly successful invasive species. Induced changes in nitrogen availability in the course of two subsequent vegetation seasons were used as a tool for finding (i) to what extent high N availability in substrate is important for building N reserves in autumn that support spring regrowth and, (ii) if contrasting contents of N storage compounds may result in differences in growth in the next season. Plants were grown in solely inorganic substrate and received a nutrient solution containing 5 mol m−3 of NH4NO3. The nitrogen supply was reduced in a low nitrogen (LN) treatment to 0.25 mol m−3 in August whereas in high nitrogen (HN) treatment remained high till December. During the following growing season were plants from both treatments grown at the low N supply (0.25 mol m−3). An increase in the content of N storage compounds was observed from September to December in both treatments. Plants in the LN treatment showed significantly lower total N content and also N allocated to mobilizable reserves (20–50% of HN plants), namely due to a smaller accumulation of amino acids and soluble protein in autumn. External nitrogen availability in autumn is hence highly important for building N reserves in this species. A major portion of the nitrogen stored in HN plants during winter was taken up from growth medium in late autumn, whereas translocation from senescing shoots dominated in LN treatment. During the winter about 50% of N in plants was permanently present in shoots bearing several frost resistant green leaves. Spring regrowth was accompanied by a fast decrease of both total N and the content of N storage compounds in both treatments. Amino acids were identified as the most prominent source of mobilizable N during spring regrowth. Development of leaf area in LN plants was significantly slower in March and April than in HN plants namely due to smaller number of tillers and green leaves per plant. Low N availability in autumn, therefore, may result in restrictions of plant growth and development in the following season.  相似文献   

14.
以小麦品种'小偃6号'(氮高效品种)和'长旱58'(氮低效品种)为材料,采用开顶式气室和土培实验研究了大气NH3浓度升高对生长于高、低两种供氮介质下小麦植株不同生育期叶片净光合速率(Pn)、气孔导度(Gs)、叶绿素含量、叶绿素荧光参数(Fv/Fm、Fv/F0)和可溶性糖含量的影响.结果显示:两小麦品种高氨低氮处理植株的Pn、Fv/F0和可溶性糖含量均高于高氨高氮和低氨低氮处理,并在生育后期差异达显著水平(P<0.05),氮低效品种的Gs也符合上述规律且不同处理间差异显著(P<0.05);小麦各生育期高氨高氮处理下植株的Pn均显著低于低氨高氮处理,且两处理间灌浆期的叶绿素含量和灌浆期以前的可溶性糖含量的差异显著(P<0.05),而两处理灌浆期以前的叶绿素荧光参数Fv/Fm在各处理条件下均无显著差异;不同处理间及品种间各项光合特征指标差异缺乏规律性.可见,大气中NH3浓度升高有利于改善低供氮介质条件下小麦植株的氮营养状况,但不同氮效率品种间的响应存在差异.  相似文献   

15.
To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.  相似文献   

16.
17.
Field experiments were carried out during three successive years to study through a dynamic approach the competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. The intensity of competition for soil N varied between experiments according to soil N supply and plant densities. This study demonstrates the key role of competition for soil N which occurs early in the crop cycle and greatly influences the subsequent growth and final performance of both species. Relative yield values for grain yield and N accumulation increased with the intensity of competition for soil N. Barley competed strongly for soil N in the intercrop. Its competitive ability increased steadily during the vegetative phase and remained constant after the beginning of pea flowering. The period of strong competition for soil N (500–800 degree-days after sowing) also corresponded to the period of rapid growth in leaf area for both species and therefore an increasing N demand. For each species, the leaf area per plant at the beginning of pea flowering was well correlated with crop nitrogen status. Barley may meet its N needs more easily in intercrops (IC) and has greater leaf area per plant than in sole crops (SC). Barley having a greater soil N supply results in an even higher crop N status and greater competitive ability relative to pea in intercrop. Competition by barley for soil N increased the proportion of pea N derived from fixation. The nitrogen nutrition index (NNI) values of pea were close to 1 whatever the soil N availability in contrast to barley. However N2 fixation started later than soil N uptake of pea and barley and was low when barley was very competitive for soil N. Due to the time necessary for the progressive development and activity of nodules, N2 fixation could not completely satisfy N demand at the beginning of the crop cycle. The amount of N2 fixed per plant in intercrops was not only a response to soil N availability but was largely determined by pea growth and was greatly affected when barley was too competitive.  相似文献   

18.
The role of nitrogen-efficient cultivars in sustainable agriculture   总被引:4,自引:0,他引:4  
To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture.  相似文献   

19.
Partial rootzone drying (PRD) is widely investigated as an effective irrigation technique, resulting in higher water use efficiency and yield for plants growing under mild water deficit. Nutrition is another important factor affecting plant yield, but nutrient acquisition has only rarely been considered in conjunction with PRD. Here we investigate the interaction between water and fertilizer supply in a pot experiment with oilseed rape (Brassica napus L.). Eight treatments were set up for the experiment, a factorial combination of four watering regimes (100% control watering at both sides of the plants; 50% control watering at both sides of the plants; 50% fixed watering applied only to one side of the plants; 50% alternate watering applied alternately to both sides of the plant) and two fertilizer placement levels (uniform over the entire pot, and patchy supplied to one side). For the 50% watering treatments, the total amount of water supplied to the plants was the same, only the pattern of application differed between treatments. Also the total fertilizer applied was the same for all treatments. Oilseed rape roots foraged effectively for water and nutrients resulting in relatively small differences in nutrient uptake and above-ground growth among the water-deficit treatments. Placing fertilizer at one side of the plants increased nutrient uptake, but there were differences between the water treatments and interactions with water uptake. Alternate watering resulted in the highest growth, as a result of the largest nitrogen and phosphorus uptake with the smallest root investment among the three water deficit treatments. Fixed watering resulted in poorest performance when fertilizer was uniformly spread throughout the pot, because the plants were unable to acquire the nutrients on the dry side. Our results show that PRD can be well combined with patchy fertilizer supply, but that reduced nutrient uptake may be expected when nutrients are supplied in parts of the soil volume that remain too dry. Responsible Editor: Yan Li  相似文献   

20.
Little is known about the effects of nutrient availability on the growth of Trifolium medium in alkaline soil. In 2010, a pot experiment (10 N, P and K fertiliser treatments) with seeding of T. medium into alkaline soil was performed and emergence of seedlings, survival, aboveground and belowground organs were studied. The positive effects of increased nutrient availability on seedling emergence ranged from 5% in the control to 17% in the high P treatment. The lowest mortality was in treatments with P and K supply and the highest in treatments with N supply, due to the sensitivity of young plants to high N availability. The highest values of most measured aboveground plant traits were recorded in treatments with simultaneous application of N, P and K. There were highly positive effects of P supply alone or in combination with N and K on the development of belowground organs. Taproot length ranged from 11.5 in high N to 40.2 cm in P treatment. There was a negative effect of N application on nodulation, especially in N treatments, where growth of T. medium was limited by insufficient P supply. The number of nodules per plant ranged from 0.8 to 4.5 in the high N and P treatments. As demonstrated in this study, T. medium is a potentially suitable legume for alkaline soils. It requires a relatively high P and K supply as well as moderate mineral N supply to achieve its maximum growth potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号