首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

2.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

3.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

4.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

5.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

6.
The kinetic and regulatory properties of cGMP-activated phosphodiesterase (PDE) from human brain were studied. In double reciprocal plots the enzyme activity is characterized by a linear dependence of cAMP and a nonlinear one for cGMP. Micromolar concentrations of cGMP accelerate cAMP hydrolysis (7-14-fold) with Ka for cGMP of 0.36 microM. Stimulation of cAMP hydrolysis is accompanied by a decrease of Km with no changes in Vmax. With a rise in the cGMP concentration above 5 microM PDE activation is changed by its inhibition. Both substrates act as competitive inhibitors towards each other. The Ki value for both cGMP and cAMP is 30 microM. After the increase in the cAMP (Bt)2 concentration the activation of 5 microM cAMP hydrolysis is accompanied by the enzyme inhibition. Both analogs competitively inhibit cGMP hydrolysis with Ki of 10 and 1500 microM for cGMP(Bt)2 and cAMP(Bt)2, respectively. The data obtained point to the existence of two binding sites for cyclic nucleotides, namely, a regulatory site which is highly specific for cGMP and a catalytic site responsible for the hydrolysis of the both substrates which displays no apparent specificity either for cAMP or for cGMP. The different affinity of natural and synthetic cyclic nucleotides for these sites is determined, to a large extent, by the amino groups in the 2nd and 6th positions of the purine ring.  相似文献   

7.
The cyclic nucleotide phosphodiesterase enzymatic system is examined in extracts of human myometrium and four individual phosphodiesterase isoforms have been isolated and characterized. A new thermostable peptide, recently purified in rat and calf myometrium, is able to stimulate up to 55-fold, the calcium-calmodulin dependent phosphodiesterase isoform. Activation of cAMP hydrolysis is by far the most marked with a 55-fold maximal stimulation at a concentration of 0.1 microM peptide and a IC50 value estimated at 30nM. For cGMP hydrolysis, the maximal effect (x25) obtained at 40nM peptide is lesser and the IC50 value is in the 10nM range. Furthermore, we verified that classical calmodulin antagonists such as calmidazolium or trifluoroperazine did not change stimulation of the calcium-calmodulin phosphodiesterase by the peptide, indicating that the myometrial peptide is different from calmodulin. To our knowledge, this is the first evidence for such a strong and selective stimulation of one isoform of the phosphodiesterase enzymatic system by a natural peptide.  相似文献   

8.
Guanosine 3':5'-monophosphate phosphodiesterases, which appear to be under allosteric control, have been partially purified from rat liver supernatant and particulate fractions. The preferred substrate for both phosphodiesterases was cGMP (Km values: cGMP less than cIMP less than cAMP). At subsaturating concentrations of substrate, the phosphodiesterases were stimulated by purine cyclic nucleotides. The order of effectiveness for activation of cyclic nucleotide hydrolysis was cGMP greater than cIMP greater than cAMP greater than cXMP. Using cAMP derivatives as activators of cIMP hydrolysis, modifications in the ribose, cyclic phosphate, and purine moieties were shown to alter the ability of the cyclic nucleotide to activate the supernatant enzyme. cGMP, at concentrations that stimulated cyclic nucleotide hydrolysis, enhanced chymotryptic inactivation of the supernatant phosphodiesterase. At similar concentrations, cAMP was not effective. It appears that on interaction with appropriate cyclic nucleotides, this phosphodiesterase undergoes conformational changes that are associated with increased catalytic activity and enhanced susceptibility to proteolytic attack. Divalent cation may not be required for the nucleotide-phosphodiesterase interaction and resultant change in conformation.  相似文献   

9.
Crude extracts of human lung tissue were examined for cyclic adenosine- and guanosine-3',5'-monophosphate (cAMP and cGMP) phosphodiesterase activities. Nonlinear reciprocal plots were observed for each substrate. DEAE-Sephadex chromatography of the extracts revealed four main fractions of activity, which were further purified by Sephadex gel filtration. The phosphodiesterase activity of the resulting individual fractions was partially characterized with respect to substrate specificity, kinetic parameters, apparent molecular weight (gel filtration), thermal stability at 30 and 37 degrees C, effect of the cyclic nucleotide not utilized as substrate, and the possible influence of Ca2+-dependent protein activator. The results indicate that the tissue contains phosphodiesterases with strict specificity and a high apparent affinity for each of the two cyclic nucleotides (the Km values determined were approximately 0.3-0.4 muM). The high affinity cAMP phosphodiesterase activity was enriched in two of the purified fractions; both activities probably represent fragments of the native high affinity cAMP specific enzyme. A third purified phosphodiesterase showed mixed substrate specificity. The Km value recorded for hydrolysis of either substrate with this enzyme was approximately 25 muM. A fourth, irregularly occurring, phosphodiesterase activity also showed mixed substrate specificity. The Km value registered for hydrolysis of either substrate with this fraction was approximately 0.4 muM. There was no evidence for a Ca2+-dependent specific activation by a boiled lung tissue supernatant of any of the purified enzymes.  相似文献   

10.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

11.
The binding of [3H]cGMP (guanosine 3',5'-monophosphate) to purified bovine adrenal cGMP-stimulated phosphodiesterase was measured by Millipore filtration on cellulose ester filter. [3H]cGMP-binding activity was enhanced when the assay was terminated in buffer containing 70% of saturated ammonium sulfate to dilute the enzyme and wash the filters. The cGMP-binding activity was co-purified with the phosphodiesterase activity. The binding of [3H]cGMP to purified enzyme was measured in the presence or absence of the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine. 1-Methyl-3-isobutylxanthine showed linear competitive inhibition with respect to cGMP as substrate in the phosphodiesterase reaction but stimulated the [3H]cGMP-binding activity in the binding assay. The stimulatory effect appeared not to be the result of preservation from [3H]cGMP hydrolysis; no cGMP phosphodiesterase activity has been measured under the cGMP-binding assay conditions, in the absence or presence of the inhibitor. Half-maximal stimulation by 1-methyl-3-isobutylxanthine occurred in the 5-7 microM concentration range. The specificity of binding of [3H]cGMP was investigated by adding increasing concentration of unlabeled analogs of cAMP (adenosine 3',5'-monophosphate) and cGMP. The binding of [3H]cGMP (50 nM) was displaced by unlabeled cGMP and cAMP with the following potency: 50% displacement was reached at the 0.1 microM cGMP range and only at a fiftyfold higher cAMP concentration. Our data with comparative series of analogs (e.g. 5'-amino-5'-deoxyguanosine 3',5'-monophosphate and 3'-amino-3'-deoxyguanosine 3',5'-monophosphate) showed that the potencies of stimulation of cAMP phosphodiesterase activity parallels displacement curves or [3H]cGMP binding to purified enzyme with no correlation with phosphodiesterase inhibition sequences. Those experiments suggest that the cGMP-binding activity is directly related to the non-catalytic (allosteric) cGMP-binding site.  相似文献   

12.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

13.
Homogenates of rat neostriatum hydrolysed cGMP faster than cAMP at both high (100 microM) and low (1 microM) substrate concentrations, although the hydrolysis of both nucleotides exhibited similar kinetic properties. Kinetic analysis of the effect of substrate concentration on the rate of cAMP and cGMP hydrolysis gave results characteristic of a negatively cooperative enzyme species, with two apparent Km's for each nucleotide. The ratio between the Vmax of the high Km form and the Vmax of the low Km form was similar in various subcellular fractions of neostriatal tissue, in a preparation of synaptic membranes from whole brain, and in homogenates of other brain regions, including both neural-rich and glial-rich tissues. In homogenates of neostriatum cAMP could almost completely block cGMP hydrolysis and vice versa. The kinetics of this inhibition were competitive at low (1 microM) substrate concentrations, and non-competitive at high (100 microM) substrate concentrations. Various phosphodiesterase inhibitors failed to preferentially inhibit the hydrolysis of either nucleotide at high or low nucleotide concentrations. Preliminary studies of the effect of a Ca(2+)-dependent endogenous activator preparation on the hydrolysis of cyclic nucleotides in homogenates of rat neostriatum showed a specific activation of cGMP hydrolysis at low nucleotide concentrations. The rate of cGMP hydrolysis at 1 microM substrate concentration was doubled in the presence of the activator preparation and 100 microM-CaCl2, while cGMP hydrolysis at 100 microM or cAMP hydrolysis at both 1 microM and 100 microM remained unaffected. These observations raise the possibility that cAMP and cGMP may be hydrolysed by the same enzyme in rat neostriatum, and that an endogenous activating factor may determine the relative affinities of the enzyme for the two nucleotides.  相似文献   

14.
Okada D  Asakawa S 《Biochemistry》2002,41(30):9672-9679
The effects of cGMP binding on the catalytic activity of cGMP-specific, cGMP-binding phosphodiesterase (PDE5) are unclear because cGMP interacts with both allosteric and catalytic sites specifically. We studied the effects of cGMP on the hydrolysis of a fluorescent substrate analogue, 2'-O-anthraniloyl cGMP, by PDE5 partially purified from rat cerebella. The preparation contained PDE5 as the major cGMP-PDE activity and was not contaminated with cAMP- or cGMP-dependent protein kinases. The Hill coefficients for hydrolysis of the analogue substrate were around 1.0 in the presence of cGMP at concentrations <0.3 microM, while they increased to 1.5 at cGMP concentrations >1 microM, suggesting allosteric activation by cGMP at concentrations close to the bulk binding constant of the enzyme. Consistent with an allosteric activation, increasing concentrations of cGMP enhanced the hydrolysis rate of fixed concentrations of 2'-O-anthraniloyl cGMP, which overcame competition between the two substrates. Such activation was not observed with cAMP, cyclic inosine 3',5'-monophosphate, or 2'-O-monobutyl cGMP, indicating specificity of cGMP. These results demonstrate that cGMP is a specific and allosteric activator of PDE5, and suggest that in cells containing PDE5, such as cerebellar Purkinje cells, intracellular cGMP concentrations may be regulated autonomously through effects of cGMP on PDE5.  相似文献   

15.
We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.  相似文献   

16.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

17.
Abstract— Cyclic 3',5'-AMP (cAMP) and cyclic 3',5'–GMP (cGMP) phosphodiesterase activities were found in human cerebrospinal fluid (CSF) using low substrate concentration (0.4μM). More rapid hydrolysis of cGMP than that of cAMP was observed in human CSF. However, cGMP hydrolytic activity of CSF was very much lower (0.3 pmol/min/ml CSF) than that of human cerebral cortex (33.7 nmol/min/g wet cortex). The pH optimum was found to be 8.0 (cGMP phosphodiesterase) and 7.5 (cAMP phosphodiesterase). The maximum stimulation of both cAMP and cGMP phosphodiesterase was achieved at 4 mM-MgCl2. Cyclic AMP had relatively little effect on the hydrolysis of cGMP in CSF and the cortex, while cGMP inhibited hydrolysis of cAMP in both tissues. Snake venom was found to stimulate cAMP and cGMP phosphodiesterase activity of CSF, by 60% and 110% respectively. This stimulation by snake venom was also observed in the cortex phosphodiesterase, but was not observed in human plasma or thyroid phosphodiesterase. When CSF was applied to Sepharose 6B column, cGMP phosphodiesterase was separated into three different molecular forms. A plot of activity against substrate concentration using peak I (largest molecular size) revealed a high affinity ( K m= 2.6μM) and a low affinity ( K m= 100μM) for cAMP suggesting the existence of at least two molecular forms of the enzyme. On the other hand, using a cGMP as substrate the only one K m value (1.90 μm) was obtained. These K m values of CSF enzymes described above were close to those obtained from human cerebral cortex preparations. The enzyme under peak I corresponded to the cortex enzyme when judged from its molecular size and stimulation by snake venom. It seems likely from our results that at least a part of CSF phosphodiesterase originates from the central nervous system.  相似文献   

18.
We have investigated effects of pH on the catalytic and allosteric properties of the cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver. In the "activated" state, i.e., with 0.5 microM [3H]cAMP plus 1 microM cGMP or at saturating substrate concentrations (250 microM [3H]cAMP or [3H]cGMP), hydrolysis was maximal at pH 7.5-8.0 in assays of different pH. Hydrolysis of concentrations of substrate not sufficient to saturate regulatory sites and below the apparent Michaelis constant (Kmapp), i.e., 0.5 microM [3H]cAMP or 0.01 microM [3H]cGMP, was maximal at pH 9.5. Although hydrolysis of 0.5 microM [3H]cAMP increased with pH from 7.5 to 9.5, cGMP stimulation of cAMP hydrolysis decreased. As pH increased or decreased from 7.5, Hill coefficients (napp) and Vmax for cAMP decreased. Thus, assay pH affects both catalytic (Vmax) and allosteric (napp) properties. Enzyme was therefore incubated for 5 min at 30 degrees C in the presence of MgCl2 at various pHs before assay at pH 7.5. Prior exposure to different pHs from pH 6.5 to 10.0 did not alter the Vmax or cGMP-stimulated activity (assayed at pH 7.5). Incubation at high (9.0-10.0) pH did, in assays at pH 7.5, markedly increase hydrolysis of 0.5 microM [3H]cAMP and reduce Kmapp and napp. After incubation at pH 10, hydrolysis of 0.5 microM [3H]cAMP was maximally increased and was similar in the presence or absence of cGMP. Thus, after incubation at high pH, the phosphodiesterase acquires characteristics of the cGMP-stimulated form. Activation at high pH occurs at 30 degrees C but not 5 degrees C, requires MgCl2, and is prevented but not reversed by ethylenediaminetetraacetic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been identified in homogenates of C-6 glial tumor cells. The Ca2+-dependent phosphodiesterase was resolved by ECTEOLA-cellulose chromatography into two fractions. One fraction contained a protein regulator of the enzyme which was identical to a homogeneous Ca2+-binding protein (CDR) from porcine brain by the criteria of electrophoretic migration, biological activity, heat stability, and behavior in diverse chromatographic systems. The second fraction contained deactivated enzyme (CDR-dependent phosphodiesterase) which regained full activity upon the readdition of both Ca2+ and CDR. In subcellular fractionation experiments both the CDR and the Ca2+-dependent phosphodiesterase were predominantly located in the 100,000g supernatant fraction.The apparent Km values of the phosphodiesterase for cyclic AMP (cAMP) and cyclic GMP (cGMP) were 10 and 1.2 μm, respectively, when CDR was not rate limiting. Minor increases in the apparent Km for cAMP were observed at rate-limiting concentrations of CDR. At the ratio of CDR to CDR-dependent enzyme present in the C-6 cell homogenate, half-maximal activation was conferred by 4 μm Ca2+ for the hydrolysis of 25 μm cGMP and by 8 μm Ca2+ for the hydrolysis of 25 μm cAMP. Increased ratios of CDR to CDR-dependent phosphodiesterase increased the sensitivity of the enzyme to Ca2+. The enzyme was more sensitive to CDR with cGMP as substrate than with cAMP, and more sensitive at high than at low cyclic nucleotide substrate concentrations. The quantity of enzyme in the assay also influenced the amount of CDR required for half-maximal activation.  相似文献   

20.
A "low Km" cAMP phosphodiesterase with properties of a peripheral membrane protein accounts for approximately 90% of total cAMP phosphodiesterase activity in particulate (100,000 X g) fractions from rat fat cells. Incubation of fat cells with insulin for 10 min increased particulate (but not soluble) cAMP phosphodiesterase activity, with a maximum increase (approximately 100%) at 1 nM insulin. Most of the increase in activity was retained after solubilization (with non-ionic detergent and NaBr) and partial purification (approximately 20-fold) on DEAE-Sephacel. The solubilized enzyme from adipose tissue was purified approximately 65,000-fold to apparent homogeneity (yield approximately 20%) by chromatography on DEAE-Sephacel and Sephadex G-200 and affinity chromatography on aminoethyl agarose conjugated with the N-(2-isothiocyanato)ethyl derivative of the phosphodiesterase inhibitor cilostamide (OPC 3689). A 63,800 +/- 200-Da polypeptide (accounting for greater than 90% of the protein eluted from the affinity column) was identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (with or without reduction). Enzyme activity was associated with the single protein band after electrophoresis under nondenaturing conditions. On gel permeation, Mr(app) was 100,000-110,000, suggesting that the holoenzyme is a dimer. A pI of 4.9-5.0 was estimated by isoelectric focusing. At 30 degrees C, the purified enzyme hydrolyzed both cAMP and cGMP with normal Michaelis-Menten kinetics; the pH optimum was 7.5. The Km(app) for cAMP was 0.38 microM and Vmax, 8.5 mumol/min/mg; for cGMP, Km(app) was 0.28 microM and Vmax, 2.0 mumol/min/mg. cGMP competitively inhibited cAMP hydrolysis with a Ki of approximately 0.15 microM. The enzyme was also inhibited by several OPC derivatives and "cardiotonic" drugs, but not by RO 20-1724. It was very sensitive to inhibition by agents which covalently modify protein sulfhydryls, but not by diisopropyl fluorophosphate. The activation by insulin and other findings indicate that the purified enzyme, which seems to belong to a subtype of low Km cAMP phosphodiesterases that is specifically and potently inhibited by cGMP, cilostamide, other OPC derivatives, and certain cardiotonic drugs, is likely to account for the hormone-sensitive particulate low Km cAMP phosphodiesterase activity of rat adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号