首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cross-correlations between stimuli and neuronal discharges yield information about synaptic events at the investigated neuron. In this paper it is shown that the time course estimated by a cross-correlogram, the cross-correlation function (ccf), represents the input current that upon injection into the perfect integrator model evokes spike sequences that are (almost) identical to those used for estimation of the ccf. Thus, the shape of a ccf may be regarded as an estimate of the underlying postsynaptic current, if the neuron investigated behaves, at least to a first approximation, like a perfect integrator model.  相似文献   

3.
Sensory transduction at a primary receptor neuron yields a current that drives the generation of action potentials. Due to the inaccessibility of that current for direct measurements the analysis of sensory transduction requires the use of neuronal output functions that give an indirect measure for the input current, i.e. the current at the impulse initiating site. Three continuous neuronal output functions are investigated with respect to their ability to reconstruct the input current (i) the membrane potential recorded under sodium channel block referred to as receptor potential, (ii) the interspike-interval function (Awiszus 1988a) and (iii) the phase lag function which is introduced in this paper. The behaviour of these three functions for constant and dynamically varying input is studied at the Hodgkin-Huxley model (Hodgkin and Huxley 1952) because for this model neuron it is possible to compare the input current estimates obtained from the output functions with the true input current. It was found that for constant and for sufficiently slow varying input all three functions allow a valid reconstruction of the input current time course. On the other hand, if the input current changes rapidly all three estimated input current time courses show considerable deviations from the true time course. The largest maximal deviation is shown by the current estimate obtained from the receptor potential whereas the phase lag function yields the smallest input current misjudgement. An experimental example to illustrate the procedure to obtain the phase lag function for a muscle spindle primary afferent is given.  相似文献   

4.
As a method for the analysis of neural spike trains, we examine fundamental characteristics of interspike interval (ISI) reconstruction theoretically with a leaky-integrator neuron model and experimentally with cricket wind receptor cells. Both the input to the leaky integrator and the stimulus to the wind receptor cells are the time series generated from the Rossler system. By numerical analysis of the leaky integrator, it is shown that, even if ISI reconstruction is possible, sometimes the entire structure of the R?ssler attractor may not be reconstructed with ISI reconstruction. For analysis of the in vivo physiological responses of cricket wind receptor cells, we apply ISI reconstruction, nonlinear prediction and the surrogate data method to the experimental data. As a result of the analysis, it is found that there is a significant deterministic structure in the spike trains. By this analysis of physiological data, it is also shown that, even if ISI reconstruction is possible, the entire attractor may not be reconstructed.  相似文献   

5.
The 1:1 phase locking of the neural discharge to sinusoidally modulated stimuli was investigated both theoretically and experimentally. On the theoretical side, a neural encoder model, the self-inhibited leaky integrator, was considered, and the phase of the locked impulse was computed for each frequency in the locking range by imposing the condition that the "leaky integral" u(t) of the driving signal should reach the threshold for the first time one stimulus period after the preceding impulse. As u(t) can be a nonmonotonic function, this approach leads to results that sometimes differ from those reported in the literature. It turns out that the phase excursion is often much smaller than the values of about 180 degrees predicted from previous analysis. Moreover, our analysis shows a peculiar effect; the phase locking frequency range narrows when the input modulation depth increases. The theoretical predictions are then compared with phase-locked discharge patterns recorded from visual cells of the Limulus lateral eye, stimulated by sinusoidally modulated light or depolarizing current. The phases of the locked spikes at each of a number of modulation frequencies have been measured. The predictions offered by the model fit the experimental data, although there are some difficulties in determining the effective driving signal.  相似文献   

6.
The behaviour of the space-clamped Hodgkin-Huxley model has been studied using bandlimited white noise (0–50 Hz) as the input membrane current and taking the output as a point process in time given by the peaks of the action potentials. The frequency response and coherence functions were measured by use of the Fourier transform and digital filtering of the spike train. The results obtained are in good agreement with those already published for the simple integrator and leaky integrator models of neuronal encoding, as well as the earlier studies on the response of the Hodgkin-Huxley model to steady currents. In addition, the threshold of the model to sinusoidal membrane currents has been measured as a function of frequency over the range of 0.1–100 Hz. This shows a relatively constant level up to 2 Hz and then a clear minimum at 60 Hz, in agreement with measured thresholds of squid axons. These results are discussed in terms of the possible contributions of action potential encoding mechanisms to the frequency responses and sinusoidal thresholds which have been measured for rapidly adapting receptors.  相似文献   

7.
The response of excitable membrane models to a cyclic input   总被引:3,自引:0,他引:3  
The response of a space-clamped patch of Hodgkin-Huxley membrane to an applied current density ofA cos(2ft)+BA/cm2 is computed for frequencies from 5 to 250 Hz. The train of action potentials generated is phase-locked to the driving cycle,N action potentials occurring at fixed phases inM cycles. For frequencies whereN/M is a simple ratio a describing function for the membrane is computed. The phase-locked behaviour and describing functions are similar to those obtained for a simple leaky integrator neurone model.  相似文献   

8.
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.  相似文献   

9.
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.  相似文献   

10.
An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1) spike generation in a neuron can be highly discriminatory for stimulus shape and 2) the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks.  相似文献   

11.
Adaptive filter model of the cerebellum   总被引:1,自引:0,他引:1  
The Marr-Albus model of the cerebellum has been reformulated with linear system analysis. This adaptive linear filter model of the cerebellum performs a filtering action of a phase lead-lag compensator with learning capability, and will give an account for the phenomena which have been termed cerebellar compensation. It is postulated that a Golgi cell may act as a phase lag element; for example, as a leaky integrator with time constant about several seconds. Under this assumption, a mossy fiber-granule cell-Golgi cell input network functions as a phase lead-lag compensator. Output signals from Golgi-granule cell systems, namely, parallel fiber signals, are gathered together through variable synaptic connections to form a Purkinje cell output. From a general theory of adaptive linear filters, learning principles for these modifiable connections are derived. By these learning principles, a Purkinje cell output converges to the desired response to minimize the mean square error of the performance. In a more general sense, a Purkinje cell acquires a filtering function on the basis of multiple pairs of input signals and corresponding desired output signals. The mode of convergence of the output signal is described when the input signal is sinusoidal.  相似文献   

12.
The significance of phase-locking measurements is discussed by comparing the phase-locking behaviour of three structurally similar neural encoders. They are the integrator with dead time, the self-inhibited integrate-and-fire system with a voltage dependent inhibitory quantum and the (already analysed) leaky integrator. The analysis shows significant differences between these systems; the loss of phaselocking as the input modulation depth increases is typical of the leaky integrator model. Moreover, the analysis performed brings out the importance of the problem of attractiveness in analysing the phaselocking of neural encoder models.  相似文献   

13.
A Volterra-like polynomial representation is derived and its convergence discussed for two neuronal models in which subthreshold inputs are integrated either without loss (integrate and fire) or with a decay which follows an exponential time course (leaky integrator). This polynomial representation provides a kind of nonlinear transfer function for the nonlinear encoding process. Standard formulae are used to derive explicitely the output for various inputs as in linear system theory. Moreover, the nonlinear transfer function associated with cascades or networks of neurons can be also obtained. Finally, extensions and implications of these results are discussed.  相似文献   

14.
Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data. Action Editor: Nicolas Brunel  相似文献   

15.
A functional expansion was used to model the relationship between a Gaussian white noise stimulus current and the resulting action potential output in the single sensory neuron of the cockroach femoral tactile spine. A new precise procedure was used to measure the kernels of the functional expansion. Very similar kernel estimates were obtained from separate sections of the data produced by the same neuron with the same input noise power level, although some small time-varying effects were detectable in moving through the data. Similar kernel estimates were measured using different input noise power levels for a given cell, or when comparing different cells under similar stimulus conditions. The kernels were used to identify a model for sensory encoding in the neuron, comprising a cascade of dynamic linear, static nonlinear, and dynamic linear elements. Only a single slice of the estimated experimental second-order kernel was used in identifying the cascade model. However, the complete second-order kernel of the cascade model closely resembled the estimated experimental kernel. Moreover, the model could closely predict the experimental action potential train obtained with novel white noise inputs.  相似文献   

16.
The spike trains that transmit information between neurons are stochastic. We used the theory of random point processes and simulation methods to investigate the influence of temporal correlation of synaptic input current on firing statistics. The theory accounts for two sources for temporal correlation: synchrony between spikes in presynaptic input trains and the unitary synaptic current time course. Simulations show that slow temporal correlation of synaptic input leads to high variability in firing. In a leaky integrate-and-fire neuron model with spike afterhyperpolarization the theory accurately predicts the firing rate when the spike threshold is higher than two standard deviations of the membrane potential fluctuations. For lower thresholds the spike afterhyperpolarization reduces the firing rate below the theory's predicted level when the synaptic correlation decays rapidly. If the synaptic correlation decays slower than the spike afterhyperpolarization, spike bursts can occur during single broad peaks of input fluctuations, increasing the firing rate over the prediction. Spike bursts lead to a coefficient of variation for the interspike intervals that can exceed one, suggesting an explanation of high coefficient of variation for interspike intervals observed in vivo.  相似文献   

17.
This paper considers steady-state and timedependent characteristics of the response of the hidden-layer neurons in a dynamic model for the neural network trained through supervised learning to perform transformation of input signals into output signals. This transformation is set up so as to correspond to variation in the directions of two-dimensional vectors and is treated as creation by the network of a movement direction in response to a stimulus direction. The input vector is encoded in the state of the input layer at the initial instant of time, and the output vector in the state of the output layer at great values of time. After the network has been trained on examples of the input-output relation, the hidden neurons turn out to be broadly tuned to direction. The corresponding dependence for their activity is approximated with a smooth function, whose maximum allows some preferred direction to be attributed to each neuron. If each hidden neuron is assigned a vector pointing in its preferred direction, then any arbitrarily chosen direction can be characterized by an imaginary neuronal population vector (Georgopoulos et al. 1986) defined as the sum of the vectors of preferred direction for the neurons, with the weights equal to their activities for the chosen direction. It is demonstrated that, although hidden neurons are broadly tuned to direction, the population vector points in a direction congruent with that of the input vector at the initial moment of time and accurately predicts the direction of the output vector at great values of time. In between, the population vector turns continuously from the one direction towards the other. The dynamic and stationary properties of the population vector of the hidden-layer neurons, as obtained within the framework of the model in question, show a close similarity to the experimentally observed (Georgopoulos et al. 1986; Georgopoulos et al. 1989) behaviour of the population vector constructed in the same manner on the ensemble of motor cortex neurons sensitive to a certain type of movement.  相似文献   

18.
The integrate-and-fire neuron model describes the state of a neuron in terms of its membrane potential, which is determined by the synaptic inputs and the injected current that the neuron receives. When the membrane potential reaches a threshold, an action potential (spike) is generated. This review considers the model in which the synaptic input varies periodically and is described by an inhomogeneous Poisson process, with both current and conductance synapses. The focus is on the mathematical methods that allow the output spike distribution to be analyzed, including first passage time methods and the Fokker–Planck equation. Recent interest in the response of neurons to periodic input has in part arisen from the study of stochastic resonance, which is the noise-induced enhancement of the signal-to-noise ratio. Networks of integrate-and-fire neurons behave in a wide variety of ways and have been used to model a variety of neural, physiological, and psychological phenomena. The properties of the integrate-and-fire neuron model with synaptic input described as a temporally homogeneous Poisson process are reviewed in an accompanying paper (Burkitt in Biol Cybern, 2006).  相似文献   

19.
20.
A method for studying the coding properties of a multicompartmental integrate-and-fire neuron of arbitrary geometry is presented. Depolarization at each compartment evolves like a leaky integrator with an after-firing reset imposed only at the trigger zone. The frequency of firing at the steady-state regime is related to the properties of the multidimensional input. The decreasing variability of subthreshold depolarization from the dendritic tree to the trigger zone is shown for an input that is corrupted by a white noise. The role of a Poissonian noise is also investigated. The proposed method gives an estimate of the mean interspike interval that can be used to study the input output transfer function of the system. Both types of the stochastic inputs result in broadening the transfer function with respect to the deterministic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号