首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proteins regulated by gibberellin (GA) in rice were determined by proteome analysis. Proteins extracted from suspension culture cells of slr1, a constitutive GA response mutant of rice, were separated by two-dimensional polyacrylamide gel electrophoresis, and three proteins were greatly accumulated in the mutant. The most up-regulated protein was methylmalonate-semialdehyde dehydrogenase (MMSDH), and the amount of protein was 7-fold that of wild type. In this study, the function of MMSDH in rice was analyzed. MMSDH gene expression in suspension culture cells, roots, and leaf sheaths ofslr1 was higher than that in its wild-type. MMSDH expression in wild-type roots was increased by exogenous GA(3). Analyzed by in situ hybridization, MMSDH mRNA was expressed in root primordia of slr1, where cells are undergoing growth. MMSDH gene expression in the root zone of tissue differentiation was higher than in the elongation zone or meristem. Transgenic rice expressing antisense MMSDH showed that its seminal roots were thinner than that of control, and that the leaf sheath elongation was slightly inhibited compared to control. Concentrations of TCA cycle metabolites were decreased in the antisense plants as compared with the control plants, suggesting that acetyl-CoA was reduced in the antisense plants. These results suggest that one of the regulations by GA signal transduction including SLR1 is the expression of MMSDH, and that MMSDH may play a role in root development and leaf sheath elongation in rice.  相似文献   

3.
4.
5.
The slender rice1 mutant (slr1) shows a constitutive gibberellin (GA) response phenotype. To investigate the mode of action of SLR1, we generated transgenic rice expressing a fusion protein consisting of SLR1 and green fluorescent protein (SLR1-GFP) and analyzed the phenotype of the transformants and the subcellular localization of GFP in vivo. SLR1-GFP worked in nuclei to repress the GA signaling pathway; its overproduction caused a dwarf phenotype. Application of GA(3) to SLR1-GFP overproducers induced GA actions such as shoot elongation, downregulation of GA 20-oxidase expression, and upregulation of SLR1 expression linked with the disappearance of the nuclear SLR1-GFP protein. We also performed domain analyses of SLR1 using transgenic plants overproducing different kinds of truncated SLR1 proteins. The analyses revealed that the SLR1 protein can be divided into four parts: a GA signal perception domain located at the N terminus, a regulatory domain for its repression activity, a dimer formation domain essential for signal perception and repression activity, and a repression domain at the C terminus. We conclude that GA signal transduction is regulated by the appearance or disappearance of the nuclear SLR1 protein, which is controlled by the upstream GA signal.  相似文献   

6.
The rice SLR1 (SLENDER RICE 1) gene encodes a DELLA protein that belongs to a subfamily of the GRAS protein superfamily and that functions as a repressor of gibberellin (GA) signaling. Based on the constitutive GA response phenotype of slr1 mutants, SLR1 has been thought to be the sole DELLA-type protein suppressing GA signals in rice. However, in rice genome databases we identified two sequences homologous to SLR1: SLR1-like1 and -2 (SLRL1 and -2). SLRL1 and SLRL2 contain regions with high similarity to the C-terminal conserved domains in SLR1, but lack the N-terminal conserved region of the DELLA proteins. The expression of SLRL1 was positively regulated by GA at the mRNA level and occurred preferentially in reproductive organs, whereas SLRL2 was moderately expressed in mature leaf organs and was not affected by GA. Transformation of SLRL1 into the slr1 mutant rescued the slender phenotype of this mutant. Moreover, overexpression of SLRL1 in normal rice plants induced a dwarf phenotype with an increased level of OsGA20ox2 gene expression and diminished the GA-induced shoot elongation, suggesting that SLRL1 acts as a repressor of GA signaling. Consistent with the fact that SLRL1 does not have a DELLA domain, which is essential for degradation of DELLA proteins, a level of SLRL1 protein was not degraded by application of gibberellic acid. However, the repressive activity of SLRL1 against GA signaling was much weaker than a truncated SLR1 lacking the DELLA domain. Based on these characteristics of SLRL1, the functional roles of SLRL1 in GA signaling in rice are discussed.  相似文献   

7.
8.
A shoot overgrowth mutant of rice ( Oryza sativa L.), accelerated internode overgrowth-1 ( ao-1), is marked by accelerated longitudinal elongation of aerial parts and overgrowth of internodes at the vegetative stage. The physiological properties of ao-1 were similar to those of wild plants treated with a saturating level of exogenous gibberellins (GAs), except for the internode-overgrowth phenotype, which was not mimicked by GA-treated wild plants. The ao-1 mutant was less sensitive to a GA biosynthesis inhibitor, Uniconazole-P, than the wild type. Dwarf alleles of three loci, including two GA-sensitive and one GA-insensitive mutation, were introduced to produce double-mutants with ao-1, but the overgrowth phenotype was not suppressed in double-homozygous mutants. These results suggest that the overgrowth phenotype of ao-1 is caused by abolition of GA signaling rather than by GA overproduction. It is likely that a part of the shoot regulation system of ao-1 is saturated with the GA signal. As a possible model consistent with the results, we propose that AO-1 protein acts as a negative regulator in GA signal transduction.  相似文献   

9.
10.
Chung YH  Cho MS  Moon YJ  Choi JS  Yoo YC  Park YI  Lee KM  Kang KW  Park YM 《FEBS letters》2001,492(1-2):33-38
We generated random Tn5 mutations in Synechocystis sp. PCC 6803 in search for genes involved in the signal transduction cascade for the cyanobacterial gliding motility. One of the non-gliding Tn5 mutants, S1-105, had an insertional inactivation in the slr1044 gene encoding a putative methyl-accepting chemotaxis protein. Interposon mutation on the slr1044 (named ctr1) in the bacterium also eliminated gliding motility. In the interposon mutant, the expression of pilA1 was 5-fold decreased compared with that of wild-type and thick pili, that are believed to be the motor for gliding, could not be observed by an electron microscope. Therefore, we suggest that the Ctr1 protein functions as a transducer that regulates the expression of pilA1, and thus is required for the biogenesis of thick pili.  相似文献   

11.
12.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

13.
One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.  相似文献   

14.
Rhizopus oryzae glucoamylase (GA) has been genetically engineered with modified signal peptide (MSP), increased copy number of the gene, and coexpression of SEC4, a gene encoding a Rab protein associated with secretory vesicles, and its secretion level has been successfully raised up to 100-fold in Pichia pastoris. The MSP was designed to contain the signal peptide of mouse salivary alpha-amylase (S8L) fused to the pro-region of the signal peptide of Saccharomyces cerevisiae alpha-mating factor to replace the wild type signal peptide (WTSP) of GA. The P. pastoris transformant MSPGA-1 containing a single copy of MSPGA gene showed a 3.6-fold increase in GA secretion as compared to that of WTSPGA-1. Moreover, the P. pastoris transformant MSPGA-7 harboring seven copies of the MSPGA inserts was identified and showed 56-fold higher secreted GA than WTSPGA-1. In addition, we found that overexpression of SEC4 further doubled the secretion level of GA in each MSPGA/P. pastoris transformant. Taken together, the MSPGA-7-SEC4 clone showed as much as 100-fold secretion level of GA when compared to WTSPGA-1. In summary, we have demonstrated that combination of the aforementioned genetic manipulations resulted in high level secretion of R. oryzae GA in P. pastoris.  相似文献   

15.
分别以携有长穗颈基因eui1、eui2和野生型基因Eui的协青早不育系和保持系6个水稻品种为材料,测定它们在抽穗始期植株中内源GA1、IAA和ABA含量的变化。结果表明,携有eui1和eui2基因的水稻可以在植株体内产生大量内源GA1,携有eui1基因的GA1含量比携有eui2基因的高。携有eui1基因的ABA含量最高,携有eui2基因的其次,而携有Eui基因的最低。IAA含量也表现出同样的趋势。表明长穗颈基因主要是通过调节内源GA1含量促进水稻最上节间的剧烈伸长。  相似文献   

16.
以拟南芥为材料,统计PRRs (pseudo-response regulators)突变体 prr5及其野生型经ABA处理后的萌发率、根长和NaCl处理后的萌发率,并采用实时定量PCR方法,对不同浓度ABA处理的拟南芥幼苗中的PRR5基因表达进行分析.结果表明:prr5突变体对ABA弱敏感,其种子萌发率比野生型显著或极显著增高,主根比野生型长,且PRR5基因表达受ABA抑制.同时,NaCl处理后,prr5的萌发率比野生型极显著增高.因此,推测prr5可能为ABA信号通路相关基因.  相似文献   

17.
18.
19.
In our study of the role of abscisic acid (ABA) in controlling the germination of barley grains, we tested a barley mutant line with a gigantum appearance (Hordeum distichum cv Quantum) for an ABA-insensitive phenotype by assaying germination in the presence of 10-4 M ABA. Dissected embryos of the mutant germinated at least 10 h earlier than did those of the wild type. The half-maximal concentrations of ABA inhibitory for germination were determined to be 5 x 10-4 M for the mutant and 10-6 M for the wild type. Expression of an ABA-induced Rab gene was studied to determine ABA responsiveness. The ABA concentration required for a half-maximal induction of Rab gene expression was 4 x 10-6 M in isolated embryos of both the mutant and wild type. This result suggests that ABA signal transduction pathways were not affected in the mutant. When isolated embryos were allowed to imbibe in water, ABA was released from the mutant and wild-type embryos at the same rate. However, the free ABA level in the incubation medium of the mutant showed a much faster decrease than that of the wild type, as demonstrated by two independent ABA assay methods (high-performance liquid chromatography and enzyme-linked immunosorbent assay). Our results suggest that turnover of ABA outside the embryo is a determining factor in the germination of barley seeds.  相似文献   

20.
The current model of gibberellin (GA) signal transduction is based on a derepressible system and a number of candidate negative regulators have been identified in Arabidopsis. We previously have reported the identification of the Arabidopsis gene SHORT INTERNODES (SHI) that causes suppression of GA responses when constitutively activated. In this paper, we show by using reporter gene analysis that the SHI gene is expressed in young organs, e.g. shoot apices and root tips. The model predicts a suppressor of GA responses to be active in these tissues to prevent premature growth or development. To study the effect of SHI on GA signaling, we used a functional assay that measures effects of signaling components on a well-defined GA response; the up-regulation of alpha-amylase in barley (Hordeum vulgare) aleurones in response to GA treatment. We found that SHI was able to specifically block the activity of a high-isoelectric point alpha-amylase promoter following GA(3) treatment, which further supports that SHI is a suppressor of GA responses. We have identified two putative loss-of-function insertion alleles of SHI and lines homozygous for either of the new alleles show no phenotypic deviations from wild type. Because SHI belongs to a gene family consisting of nine members, we suggest that SHI and the SHI-related genes are functionally redundant. We also show that a functional ERECTA allele is able to partly suppress the dwarfing effect of the shi gain-of-function mutation, suggesting that the erecta mutation harbored by the Landsberg erecta ecotype is an enhancer of the shi dwarf phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号