首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccination, as an approach to prostate cancer, has largely focused on immunotherapy utilizing specific molecules or allogeneic cells. Such methods are limited by the focused antigenic menu presented to the immune system and by immunotolerance to antigens recognized as “self”. To examine if a xenogeneic tissue vaccine could stimulate protective immunity in a human prostate cancer cell line, a vaccine was produced by glutaraldehyde fixation of harvested PAIII prostate cancer cells tumors (GFT cell vaccine) from Lobund-Wistar rats. Immunocompetent Ncr-Foxn1<nu> mice were vaccinated with the GFT cell vaccine four times, 7 days apart. The control animals were either not vaccinated or vaccinated with media or glutaraldehyde-fixed PC346C human prostate cancer cells and adjuvant. About 8 days after the final boost, serum and spleens were harvested. The splenocytes were co-incubated with PC346C cells and then transplanted orthotopically into sygneneic immunodeficient nude mice. About 10 weeks later, the prostates were weighed and sampled for histolologic examination. The spleens were harvested from additional mice, and the splenocytes were cultured, either with or without pulsing by GFT cells, and the supernatants harvested 72 h later for cytokine analysis. Results showed that vaccination with GFT cells resulted in increased serum antibody to a PAIII cell lysate; reduced weight of the prostate/seminal vesicle complex and reduced incidence of prostate cancer in nude mice; increased splenocyte supernatant levels of TNF-α, IL-2, IFN-γ and IL-12, cytokines associated with Th1 immunity; and increased splenocyte supernatant levels of IL-4 and IL-10, cytokines associated with Th2 immunity. In summary, the results suggest that use of a xenogeneic tissue vaccine can stimulate protective immunity against human prostate cancer cells.  相似文献   

2.
This review describes a method by which the human natural anti-Gal antibody can be exploited as an endogenous adjuvant for targeting autologous tumor vaccines to antigen-presenting cells (APCs). Tumor cells remaining in the patient after completion of surgery, radiation, and chemotherapy are the cause of tumor relapse. These residual tumor cells can not be detected by imaging, but their destruction may be feasible by active immunotherapy. Since specific tumor-associated antigens (TAAs) have not been identified for the majority of cancers, irradiated autologous tumor vaccines have been considered as an immunotherapy treatment that may elicit an immune response against the residual tumor cells expressing TAAs. However, tumor cells evolve in cancer patients in a stealthy way, i.e., they are not detected by APCs, even in the form of vaccine. Effective targeting of tumor vaccines for uptake by APCs is a prerequisite for eliciting an effective immune response which requires transport of the vaccine by APCs from the vaccination site to the draining lymph nodes. In the lymph nodes, the APCs transporting the vaccine process and present peptides, including the autologous TAA peptides for activation of the tumor-specific T cells. The required targeting of vaccines to APCs is feasible in humans by the use of anti-Gal. This antibody interacts specifically with the -gal epitope (Gal1-3Gal1-4GlcNAc-R) and is the only known natural IgG antibody to be present in large amounts in all humans who are not severely immunocompromised. The -gal epitope can be synthesized on any type of human tumor cell by the use of recombinant 1,3galactosyltransferase (1,3GT). Solid tumors obtained from surgery are homogenized and their membranes subjected to -gal epitope synthesis. Similarly, -gal epitopes can be synthesized on intact tumor cells from hematological malignancies. Administration of irradiated autologous tumor vaccines processed to express -gal epitopes results in in situ opsonization of the vaccinating cells or cell membranes due to anti-Gal binding to these epitopes. The bound antibody serves to target the autologous tumor vaccine to APCs because the Fc portion of the antibody interacts with Fc receptors on APCs. Since patients receive their own TAAs, the vaccine is customized for autologous TAAs in the individual patient. The repeated vaccination with such autologous tumor vaccines provides the immune system of each patient with an additional opportunity to be effectively activated by the autologous TAAs. In some of the immunized patients this activation may be potent enough to induce an immune-mediated eradication of the residual tumor cells expressing these TAAs.Abbreviations Ab Antibody - Ag Antigen - APC Antigen-presenting cell - DC Dendritic cell - FcR Fc receptor - -gal epitope Gal1-3Gal1-4GlcNAc-R - 1,3GT -1,3-Galactosyltransferase - KO mice Knockout mice for 1,3GT - OVA Ovalbumin - SA Sialic acid - TAA Tumor-associated antigen  相似文献   

3.
Purpose: Dendritic cells (DCs) are considered potential candidates for cancer immunotherapy due to their ability to process and present antigens to T cells and stimulate immune responses. However, DC-based vaccines have exhibited minimal effectiveness against established tumors in mice and human cancer patients. The use of appropriate adjuvants can enhance the efficacy of DC-based cancer vaccines in treating established tumors. Methods: In this study we have employed -tocopheryl succinate (-TOS), a nontoxic esterified analogue of vitamin E, as an adjuvant to enhance the effectiveness of DC vaccines in treating established murine Lewis lung (3LL) carcinomas. Results: We demonstrate that locally or systemically administered -TOS in combination with nonmatured DCs injected intratumorally (i.t.) or subcutaneously (s.c.) significantly inhibits the growth of preestablished 10-day tumors (mean tumor volume of 77.5 ± 17.8 mm3 on day 30 post–tumor injection) as compared to -TOS alone (mean tumor volume of 471 ± 68 mm3 on day 30 post–tumor injection). Additionally, the adjuvant effect of -TOS was superior to that of cyclophosphamide (CTX). The mean tumor volume on day 28 post–tumor injection in mice treated with CTX+DCs was 611 ± 94 mm3 as compared to 105 ± 36 mm3 in mice treated with -TOS+DCs. Analysis of purified T lymphocytes from mice treated with -TOS+DC revealed significantly increased secretion of IFN- as compared to T cells from the various control groups. Conclusion: This study demonstrates the potential usefulness of -tocopheryl succinate, an agent nontoxic to normal cell types, as an adjuvant to augment the effectiveness of DC-based vaccines in treating established tumors.Abbreviations AO acridine orange - CTX cyclophosphamide - DC dendritic cell - dUTP deoxyuridine triphosphate - FACS fluorescence-activated cell sorter - FBS fetal bovine serum - FITC fluorescein isothiocyanate - GM-CSF granulocyte-macrophage colony-stimulating factor - IFN- interferon-gamma - IL-4 interleukin-4 - NaS sodium succinate - OCT optimal cutting temperature - PBS phosphate-buffered saline - PI propidium iodide - Tdt terminal deoxynucleotidyl transferase - TNF- tumor necrosis factor alpha - -TOS -tocopheryl succinateSupported by grants 1 RO1 CA94111-02 from the NIH and DAMD 17010126 from the DOD.  相似文献   

4.
We are developing vaccines that activate tumor-specific CD4+ T cells. The cell-based vaccines consist of MHC class I+ tumor cells that are genetically modified to express syngeneic MHC class II and costimulatory molecules. Previous studies demonstrated that treatment of mice with established tumors with these vaccines resulted in regression of solid tumors, reduction of metastatic disease, and increased survival time. Optimal vaccines will prime naïve T cells and activate T cells to tumor peptides derived from diverse subcellular compartments, since potential tumor antigens may reside in unique cellular locales. To determine if the MHC class II / costimulatory molecule vaccines fulfill these conditions, the vaccines have been tested for their ability to activate antigen-specific, naïve, transgenic CD4+ T lymphocytes. MHC class II+CD80+ vaccine cells were transfected with hen eggwhite lysozyme targeted to the cytosol, nuclei, mitochondria, or endoplasmic reticulum, and used as antigen-presenting cells to activate I-Ak–restricted, lysozyme-specific CD4+ 3A9 transgenic T cells. Regardless of the cellular location of lysozyme, the vaccines stimulated release of high levels of IFN- and IL-2. If the vaccines coexpressed the MHC class II accessory molecule invariant chain, then IFN- and IL-2 release was significantly reduced. These studies demonstrate that in the absence of invariant chain the MHC class II and CD80 tumor cell vaccines (1) function as antigen-presenting cells to activate naïve, tumor-specific CD4+ cells to endogenously synthesized tumor antigens; (2) polarize the activated CD4+ T cells toward a type 1 response; and (3) present epitopes derived from varied subcellular locales.Abbreviations APC antigen-presenting cells - CIITA MHC class II transactivator - CytoHEL HEL targeted to cytoplasm - ER endoplasmic reticulum - ErHEL HEL targeted to ER - HEL hen eggwhite lysozyme - 3A9 HEL46–61–specific, I-Ak–restricted TCR - Hph hygromycin - Ii invariant chain - MAb monoclonal antibody - MitoHEL HEL targeted to mitochondria - NucHEL HEL targeted to nucleus - Puro puromycin - TG transgenic - Zeo Zeocin  相似文献   

5.
HER-2/neu is an immunogenic protein eliciting both humoral and cellular immune responses in patients with HER-2/neu-positive (+) tumors. Preexisting cytotoxic T lymphocyte (CTL) immunity to HER-2/neu has so far been mainly evaluated in terms of detection of CTL precursor (CTLp) frequencies to the immunogenic HLA-A2–binding nona-peptide 369-377 (HER-2(9369)). In the present study, we examined patients with HER-2/neu+ breast, ovarian, lung, colorectal, and prostate cancers for preexisting CTL immunity to four recently described HER-2/neu–derived and HLA-A2–restricted "cytotoxic" peptides and to a novel one spanning amino acids 777–785 also with HLA-A2–binding motif. We utilized enzyme-linked immunosorbent spot (ELISpot) assay, which allows a quantitative and functional assessment of T cells directed against specific peptides after only brief in vitro incubation. CTL reactivity was determined with an interferon (IFN-) ELISpot assay detecting T cells at the single cell level secreting IFN-. CTLp were defined as peptide-specific precursors per 106 peripheral blood mononuclear cells (PBMCs). Patients' PBMCs with increased CTLp were also tested against autologous tumor targets and peptide-pulsed dendritic cells (DCs) in cytotoxicity assays. We also studied patients with HER-2/neu-negative (-) tumors and healthy individuals. Of the HER-2/neu+ patients examined, 31% had increased CTLp to HER-2(9952), 19% to HER-2(9665), 16% to HER-2(9689), and 12.5% HER-2(9435), whereas only 2 of 32 patients (6%) responded to HER-2(9777). The CTLp recognizing HER-2(9952) were extremely high in two patients with breast cancer, one with lung cancer, and one with prostate cancer. None of the HER-2/neu- patients or healthy donors exhibited increased CTLp to any of these peptides. Besides IFN- production, preexisting CTL immunity to all five HER-2/neu peptides was also shown in cytotoxicity assays where patients' PBMCs with increased CTLp specifically lysed autologous tumor targets and autologous peptide-pulsed DCs. Our results demonstrate for the first time that (1) preexisting immunity to peptides HER-2(9435), HER-2(9952), HER-2(9689), HER-2(9665), and HER-2(9777) is present in patients with HER-2/neu+ tumors of distinct histology, (2) HER-2(9777) is a naturally processed peptide expressed on the surface of HER-2/neu+ tumors, as are the other four peptides, and (3) HER-2/neu+ prostate tumor cells can be recognized and lysed by autologous HER-2 peptide-specific CTL. Our findings broaden the potential application of HER-2/neu-based immunotherapy.  相似文献   

6.
Recently, there has been renewed interest in the concept of tumor vaccines using genetically engineered tumor cells expressing a variety of cytokines to increase their immunogenicity. Human MCP-1 (JE) is a potent chemoattractant and activator of monocytes and T lymphocytes and thus a good candidate gene for a tumor vaccine. We therefore evaluated the efficacy of vaccines consisting of irradiated tumor cells transduced with the murine MCP-1 gene in the syngeneic 9L gliosarcoma brain tumor model. 9L cell lines stably expressing murine MCP-1 (9L-JE) and control cell lines expressing neomycin 3 phosphotransferase (9L-Neo) were generated by infection with a Moloney murine leukemia retroviral vector. Fisher 344 rats were immunized with intradermal injections of 5×105 or 2×106 irradiated (5000 cGy) 9L-JE, 9L-Neo, and wild-type 9L (9L-WT) cells. Two weeks later immunized an non-immunized animals were challenged with varyious doses of intradermal (5×106–5×107) or intracerebral (2×104–5×105) 9L-WT cells. Intradermal tumors grew in all non-immunized animals. No tumors grew in animals immunized with irradiated 9L-JE or 9L-Neo cells and challenged with inocula of fewer than 5×105 9L-WT cells. With higher inocula up to 107 cells, tumors appeared in all the animals. Tumors in animals immunized with 9L-JE were always smaller than tumors in the other groups. In addition, only the 9L-JE vaccine protected against tumor inocula of 5×107 cells. Thus vaccination with MCP-1-expressing cells was able to protect animals against at least a 100-fold larger number of challenge tumor cells than vaccination with control cells. In contrast to studies with intradermal tumors, immunization with 9L-JE and 9L-Neo produced only minimal protection against intracerebral tumors. There was no significant difference between the 9L-JE and 9L-Neo vaccines in intracerebral challenge. This study suggests that tumor vaccines expressing cytokine genes such as MCP-1 can increase the antitumor response. However, the protective effect of these vaccines appears to be largely limited to intradermal tumors rather than intracerebral tumors.  相似文献   

7.
Virosomes as new carrier system for cancer vaccines   总被引:1,自引:0,他引:1  
HER-2/neu, a tumor-associated antigen (TAAg), plays a critical role in oncogenesis of various tumor types, and its selective overexpression by malignant tumor cells makes it an ideal target for immunotherapy. A prerequisite for clinical vaccines is the construction of safe and highly immunogenic reagents able to generate efficient immune responses against TAAg. Previous protein vaccines, consisting of the extracellular domain of HER-2/neu (pNeuECD), were shown to elicit an immune response that did not provide protection from transplantable tumors expressing HER-2/neu. Here we showed that virosomes, which consist of reconstituted viral envelopes without viral genetic material, can act as a carrier and an adjuvant for a truncated protein pNeuECD . Mice vaccinated with pNeuECD either encapsulated in virosomes or bound to the virosomal membrane (Vir-pNeuECD), generated rNeu-specific humoral and cytotoxic immune responses. In addition, Vir-pNeuECD induced significant tumor rejection and additionally did not lead to delayed tumor formation when compared with free pNeuECD in complete Freunds adjuvant. There was no difference between the virosomal constructs. Taken together these results suggest that virosomes, as clinically approved safe vaccines, can be used to elicit both humoral and cell-mediated responses against TAAg and induce tumor rejection. Our model is providing important preclinical data to design human vaccination trials for patients with tumors overexpressing HER-2/neu, either as a primary vaccination or as a boost in combination with other vaccines in a context of an adjuvant treatment plan.Ruth Schwaninger and Ernst Waelti contributed equally to this article  相似文献   

8.
Summary The mortality rate from leukemia and other neoplastic diseases for the years 1957–1969 was compared in 85,356 BCG-vaccinated newborns at Cook County Hospital, Chicago, and 534,870 nonvaccinated population in Chicago (all black). All cases of cancer deaths under 20 years of age in the black population of Chicago were obtained from death certificates at the Chicago Board of Health. The total black population 20 years of age and under was determined by demographic means from the Chicago Board of Health birth records, adjusted for deaths under the period of study. There were 13 deaths among the vaccinated for a rate of 1.17/100,000/year and 306 deaths among the nonvaccinated for a rate of 4.39/100,000/year. The difference was statistically highly significant (p<0.001). This was a reduction of 74% in the vaccinated group as compared to the nonvaccinated. There were no deaths from malignancies in the under 1 year of age group in the vaccinated, but a drop in the rates to 50% or less in the later age groups (except 10–14 years) in the vaccinated as compared to the nonvaccinated. Thus revaccination at given intervals (1–2 years) is recommended. The National Cancer Institute checked death reports due to cancer elsewhere in the country in our vaccinated population. To reduce the possibility of error, deaths due to trauma in the two groups were determined. No differences in the rates were found. The major categories of neoplasms for this age group were (1) leukemia, (2) central nervous system, (3) lymphoma, and (4) bone and connective tissue. This was a retrospective study. Statistically designed, controlled studies may provide definite conclusions.  相似文献   

9.
Multiple myeloma (MM) cells produce monoclonal immunoglobulin (Ig) which serves as a truly tumor-specific antigen. The tumor-specific antigenic determinants are localized in the variable (V)-regions of the monoclonal Ig and are called idiotopes (Id). We review here the evidence obtained in a T-cell receptor (TCR) transgenic mouse model that Id-specific, MHC class II–restricted CD4+ T cells play a pivotal role in immunosurveillance and eradication of MHC class II-negative MM cells. In brief, monoclonal Ig secreted by MM cells is endocytosed and processed by antigen-presenting cells (APCs) in the tumor. Such tumor-resident dendritic cell APCs in turn present Id peptide on their class II molecules to Id-specific CD4+ T cells which become activated and indirectly kill the MHC class II-negative myeloma cells. However, if the Id-specific CD4+ cells fail to eliminate the MM cells during their initial encounter, the increasing number of tumor cells secretes so much monoclonal Ig that T-cell tolerance to Id is induced. Extending these findings to MM patients, Id-specific immunotherapy should be applied at a time of minimal residual disease and when new Id-specific T cells have been educated in the thymus, like after high-dose chemotherapy and autologous stem cell transplantation.Abbreviations APC antigen-presenting cell - ASCT autologous stem cell transplantation - CDR complementarity-determining region - CFA complete Freunds adjuvant - DC dendritic cell - GM-CSF granulocyte-macrophage colony-stimulating factor - H heavy - Id idiotope or idiotype - Ig immunoglobulin - IL interleukin - L light - M-component monoclonal component - MGUS monoclonal gammopathy of undetermined significance - MHC major histocompatibility complex - MM multiple myeloma - MOPC mineral oil–induced plasmacytoma - TCR T-cell antigen receptor - V variableA. Corthay and B. Bogen are joint corresponding authors for this article.  相似文献   

10.
Background: Monoclonal antibodies (MAbs) are used for targeting agents to tumours while minimizing normal tissue exposure. Methods: A new anti–prostate cancer MAb, BLCA-38, was radioiodinated (I125) and assessed for its ability to target subcutaneous human prostate cancer (DU-145) xenografts after systemic intraperitoneal administration. For comparison, the profile of J591 MAb (now in clinical trial) against LNCaP-LN3 tumours was examined. Biodistribution profiles were obtained at various times, by assessing injected dose/gram (%ID/g) and xenograft to blood (X/B) ratios. Microautoradiography of xenografts was performed. After conjugation with a melittin peptide toxin, the profiles of BLCA-38 and J591 were compared with that of an irrelevant antibody, DS-1. Results: Xenograft localization by 125I-labeled BLCA-38 and J591 MAbs to their relevant antigen-positive tumors was comparable, and there was no unusual localization in nontumour tissues. F(ab)2 and Fab fragments gave improved X/B ratios, but the %ID/g xenograft was decreased and they accumulated in kidneys, bladder and stomach. In contrast, the conjugates of irrelevant antibody showed no tumour targeting. Microautoradiography showed more tumour accumulation of MAbs than F(ab)2s or Fabs. Conclusions: BLCA-38 can target prostate cancer in vivo almost as effectively as J591. Given that J591 is used clinically, BLCA-38, which targets a different antigen, has potential for radioimmunoscintigraphy and for therapeutic targeting of prostate cancer.  相似文献   

11.

Introduction

Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin–4, a glucagon-like peptide–1 (GLP–1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin–4 and metformin using a prostate cancer model.

Methods

Prostate cancer cells were treated with Exendin–4 and/or metformin. Cell proliferation was quantified by growth curves and 5-bromo–2′-deoxyuridine (BrdU) assay. TUNEL assay and AMP-activated protein kinase (AMPK) phosphorylation were examined in LNCaP cells. For in vivo experiments, LNCaP cells were transplanted subcutaneously into the flank region of athymic mice, which were then treated with Exendin–4 and/or metformin. TUNEL assay and immunohistochemistry were performed on tumors.

Results

Exendin–4 and metformin additively decreased the growth curve, but not the migration, of prostate cancer cells. The BrdU assay revealed that both Exendin–4 and metformin significantly decreased prostate cancer cell proliferation. Furthermore, metformin, but not Exendin–4, activated AMPK and induced apoptosis in LNCaP cells. The anti-proliferative effect of metformin was abolished by inhibition or knock down of AMPK. In vivo, Exendin–4 and metformin significantly decreased tumor size, and further significant tumor size reduction was observed after combined treatment. Immunohistochemistry on tumors revealed that the P504S and Ki67 expression decreased by Exendin–4 and/or metformin, and that metformin increased phospho-AMPK expression and the apoptotic cell number.

Conclusion

These data suggest that Exendin–4 and metformin attenuated prostate cancer growth by inhibiting proliferation, and that metformin inhibited proliferation by inducing apoptosis. Combined treatment with Exendin–4 and metformin attenuated prostate cancer growth more than separate treatments.  相似文献   

12.
Summary The i.p. delivery of murine monoclonal antibody was compared with i.v. delivery in normal mice and rats, in normal nude mice and in those with i.p. human ovarian carcinoma xenografts. In normal rats, all classes of antibodies and antibody fragments evaluated were cleared from the peritoneal cavity at comparable rates. The regional delivery (Rd1) advantage to the peritoneal cavity following i.p. delivery was thus most dependent on the rate of clearance of the antibody or fragment from the blood stream. Determining the exact i.p. delivery advantage was problematic due to the difficulty in reliably obtaining peritoneal fluid later than 9–10 h after i.p. injection in normal animals. During the first 9 h following i.p. injection, the Rd(0–9/0–9) was, for a murine IgG2ak Fab>F(ab)2>IgG (at 13.6>10>7.9). Two murine IgMs evaluated differed in Rd(0–9) at 27.1 and 9.2 respectively. When blood levels were extrapolated to infinity, these Rd (0–9/) values were considerably lower with the Fab having the highest Rd at 4.67. The i.p. Rd advantage was almost solely due to the i.p. antibody levels seen in the first 24 h after injection, as after that time, blood levels become comparable to those seen following i.v. injection. Normal tissues obtained at sacrifice 5–7 days after i.p. injection. Normal tissues obtained at sacrifice 5–7 days after i.p. or i.v. injection in rats showed comparable levels of radioantibody activity, whether the injection was i.p. or i.v. (except for higher diaphragmatic levels following i.p. delivery). In nude mice with i.p. human-derived ovarian tumors, intact IgG clearance from the peritoneal cavity to the blood was considerably slower than in normal animals, and early i.p. tumor uptake of specific antibody was significantly higher than that following i.v. antibody delivery. With higher early tumor uptake and lower systemic exposure, early tumor/nontumor ratios were significantly greater than those for i.v. delivery, though not beyond 48 h after i.p. injection. This study demonstrates the pharmacokinetic rationale for i.p. monoclonal antibody delivery, especially for agents cleared rapidly from the blood, such as antibody fragments. In addition, definite i.p. delivery benefit for antibody specific to i.p. tumors in the i.p. ovarian cancer system was shown soon after injection. These data regarding i.p. antibody delivery should be useful in rationally planning diagnostic and therapeutic studies involving the i.p. delivery of unmodified and immunoconjugated monoclonal antibodies.Rd is area under the curve (AUC) for peritoneal fluid activity/AUC for blood radioactivity. Rd (0–9/0–9) is the Rd measured from 0 to 9 h for both peritoneal fluid and blood. Rd (0–9/) is the conservative estimate of Rd with i.p. fluid AUC measured to 9 h, with blood levels extrapolated to infinity. Rd2 is Rd/(AUC i.p. fluid (0–9)/AUC blood (0–9)) after i.v. injection.  相似文献   

13.
The method of ultrathin sections of unsquashed salivary gland polytene chromosomes of Ch. thummi was applied to their ultrastructural mapping. There was a good agreement between electron micrographs and Hägele's light microscopic map (1970) with respect to the pattern and number of bands. 94% of bands were identified in larval and prepupal chromosomes. In Ch. thummi, band thickness varied from 0.05–0.5 m. Most characteristic were 0.2–0.3 m bands. Morphologically, bands were classified as: continuous (frequently with holes and gaps), discrete, dotted and continuous-discrete, discrete-dotted.Band morphology is related to band size, such that smaller bands, as a rule, were also dotted. Bands beginning to puff likewise became dotted. Interbands in unsquashed chromosome sections were from 0.05–0.15 m. The smallest interbands contained only fibrils, in the larger interbands few granules could be observed. This makes interbands distinguishable from a typical puff with many such granules.  相似文献   

14.
BACKGROUND: DNA vaccines have been shown to be an effective approach to induce antigen-specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem-cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant. METHODS: A series of DNA plasmids encoding human PSCA, human HSP70 and their conjugates was constructed and injected into male mice intramuscularly (i.m.). To evaluate the immune responses and therapeutic efficacy of these plasmids, major histocompatibility complex (MHC)-restricted PSCA and HSP70-specific epitopes were predicted and a mouse model with a human PSCA-expressing tumor was constructed. RESULTS: The result showed that mice vaccinated with PSCA-HSP plasmids generated the strongest PSCA-specific CD8+ T-cell immune response, but the CD4+ TH1 and TH2 cell immune responses were similar with those vaccinated with other HSP-adjuvant PSCA plasmids or only PSCA DNA. The immunity of HSP70 was also observed and the mice i.m. injected with PSCA+ HSP mixed plasmids generated the lowest anti-HSP antibodies. Furthermore, these vaccinations inhibited the growth of PSCA-expressing tumors and prolonged mouse survival. CONCLUSIONS: These observations emphasize and extend the potential of the human HSP70 gene as adjuvant for DNA vaccines, and the vaccine based on PSCA and HSP70 is of potential value for treating prostate cancer.  相似文献   

15.
Paclitaxel, a semisynthetic taxane, is one of the most active chemotherapeutic agents for the treatment of patients with breast cancer. We focused on the effect of paclitaxel on the cytotoxicity of natural killer (NK) cells. NK cells were purified by negative selection with magnetic beads from peripheral blood mononuclear cells of healthy volunteers. A human breast carcinoma cell line BT-474 and an NK cell–sensitive erythroleukemia cell line K562 were used as targets. Cytotoxicity of NK cells was determined by 51Cr-release assay with labeled target cells. Paclitaxel (1–100 nM) did not affect cellular viability, and significantly enhanced cytotoxicity of NK cells in a dose-dependent manner. Although paclitaxel did not affect Fas-ligand expression of NK cells, paclitaxel induced mRNA and protein production of perforin, an effector molecule in NK cell–mediated cytotoxicity. Concanamycin A, a potent inhibitor of the perforin-mediated cytotoxic pathway, inhibited paclitaxel-dependent NK cell–mediated cytotoxicity. Furthermore, paclitaxel induced activation of nuclear factor B (NF-B) in NK cells. NF-B inhibitor pyrrolidine dithiocarbamate significantly suppressed both paclitaxel-induced perforin expression and NK cell cytotoxicity. Our results show for the first time that paclitaxel enhances in vitro cytotoxicity of human NK cells. Moreover, our results suggest a significant association between enhanced NK cell cytotoxicity, increased perforin production, and NF-B activation.  相似文献   

16.
This study examines various optimization criteria as potential sources of constraints that eliminate (or at least reduce the degree of) mechanical redundancy in prehension. A model of nonvertical grasping mimicking the experimental conditions of Pataky et al. (current issue) was developed and numerically optimized. Several cost functions compared well with experimental data including energylike functions, entropylike functions, and a motor command function. A tissue deformation function failed to predict finger forces. In the prehension literature, the safety margin (SM) measure has been used to describe grasp quality. We demonstrate here that the SM is an inappropriate measure for nonvertical grasps. We introduce a new measure, the generalized safety margin (GSM), which reduces to the SM for vertical and two-digit grasps. It was found that a close-to-constant GSM accounts for many of the finger force patterns that are observed when grasping an object oriented arbitrarily with respect to the gravity field. It was hypothesized that, when determining finger forces, the CNS assumes that a grasped object is more slippery than it actually is. An operative friction coefficient of approximately 30\% of the actual coefficient accounted for the offset between experimental and optimized data. The data suggest that the CNS utilizes an optimization strategy when coordinating finger forces during grasping.  相似文献   

17.
As part of influenza pandemic preparedness, policy decisions need to be made about how best to utilize vaccines once they are manufactured. Since H5N1 avian influenza virus has the potential to initiate the next human pandemic, isolates of this subtype have been used for the production and testing of prepandemic vaccines. Clinical trials of such vaccines indicate that two injections of preparations containing adjuvant will be required to induce protective immunity. However, this is a working assumption based on classical serological measures only. Examined here are the dose of viral hemagglutinin (HA) and the number of inoculations required for two different H5N1 vaccines to achieve protection in ferrets after lethal H5N1 challenge. Ferrets inoculated twice with 30 μg of A/Vietnam/1194/2004 HA vaccine with AlPO4, or with doses as low as 3.8 μg of HA with Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant, were completely protected against death and disease after H5N1 challenge, and the protection lasted at least 15 months. Cross-clade protection was also observed with both vaccines. Significantly, complete protection against death could be achieved with only a single inoculation of H5N1 vaccine containing as little as 15 μg of HA with AlPO4 or 3.8 μg of HA with Iscomatrix adjuvant. Ferrets vaccinated with the single-injection Iscomatrix vaccines showed fewer clinical manifestations of infection than those given AlPO4 vaccines and remained highly active. Our data provide the first indication that in the event of a future influenza pandemic, effective mass vaccination may be achievable with a low-dose “single-shot” vaccine and provide not only increased survival but also significant reduction in disease severity.The emergence in 2004 and continued persistence of highly pathogenic H5N1 influenza A virus in bird populations is justifiably considered a potential pandemic threat (19). The virus has become endemic in many areas of the world and has demonstrated an ability to infect humans through transmission from poultry, thus far with limited human-to-human spread (26). Of great concern is that the case fatality rate for H5N1 infection of humans is reported to be >60%, compared to 0.1% for the 1957 and 1968 pandemics and 2 to 3% for the 1918 pandemic, which together resulted in at least 50 million deaths (14, 20). For these reasons, the development of strategies to minimize the impact if the virus mutates to acquire efficient human-to-human spread is essential.Vaccination is considered the best method to ultimately control an influenza pandemic and should be implemented as soon as the pandemic strain is identified and vaccines produced (9, 23). To maximize coverage, pandemic vaccines will need to be available rapidly and will have to include the minimal dose of antigen to achieve solid immunity. This poses several major problems. One is that the human population is predominantly immunologically naive to the emerging subtype of virus, and so very large numbers of people will need to be protected as quickly as possible, which will place a huge demand on vaccine supply. The use of an adjuvant to lower the dose of antigen required (8) may ameliorate this problem to some degree, but there are few adjuvants that are suitable for human use, particularly those in ready supply in the event of a pandemic. In addition, we have little understanding of what levels and what type of immunity will provide protection from death or severe disease due to H5N1 infection (19).Clinical trials with candidate H5N1 vaccines have been initiated with traditional virus preparations (egg-grown whole or detergent-disrupted “split” virions) and alternative vaccine strategies (recombinant protein, live-attenuated, and adjuvant-containing vaccines) (24). Using split virus alone, high amounts of antigen, containing 90 μg of hemagglutinin (HA), given twice, were required to elicit what is considered to be a protective antibody response in ca. 50% of subjects (25). Adjuvants, such as those based on aluminum salts (3) or the oil-in-water adjuvants MF59 (2, 17, 22) and ASO3 (13, 21), have provided considerable antigen dose reduction, but in all clinical trials and preclinical animal evaluation to date, two doses of vaccine have been required to achieve what is considered to be adequate anti-HA antibody levels or protection, respectively (8, 24).One aim of the present study was to determine how suitable the ferret model is for making assumptions about human responsiveness to influenza vaccination. To do this, we evaluated in ferrets the same H5N1 pandemic vaccines, formulated with or without AlPO4 adjuvant, that had been examined in phase 1 and II randomized trials in healthy adults (18). We then sought to compare whether the responses to these vaccines were protective against lethal H5N1 challenge and whether the protective effects could be achieved with less antigen by using the more potent saponin-based Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant. The Iscomatrix adjuvant has been shown to be safe and well tolerated in humans and to induce strong and long-lived antibody and cytotoxic T-cell responses in both humans and animal studies (7). Finally, the encouraging results with these adjuvants led us to examine whether protection from severe disease and death could be achieved after only a single injection of the H5N1 vaccines.  相似文献   

18.
19.
In melanoma patients, CD8+ cytotoxic T cells have been found recognizing self-proteins of which the expression is restricted to the melanocytic lineage. These melanocyte differentiation antigens are expressed in normal melanocytes as well as in 80–100% of primary and metastatic melanoma. In this report, six HLA-A*0201–subtyped metastatic melanoma patients vaccinated with dendritic cells (DCs) pulsed with autologous tumor lysates and keyhole limpet hemocyanin (KLH) were screened for the presence of CD8+ T cells specific for three HLA-A*0201–binding peptides derived from the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase. For this purpose, nonstimulated as well as in vitro peptide-stimulated peripheral blood mononuclear cells (PBMCs) were tested for peptide-specific IFN- release by enzyme-linked immunosorbent spot (ELISpot) assays. Furthermore, expression of the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase in tumor lesions was analyzed by immunohistochemistry before and after vaccination. We also used the ELISpot technique to investigate whether KLH-specific T cells were induced and whether these cells released type 1 (IFN-) and/or type 2 (IL-13) cytokines. Our data show induction of CD8+ T cells specific for the melanosomal peptides MART-1/Melan-A27–35 or tyrosinase1–9, as well as IFN-–releasing KLH-specific T cells, in two of six vaccinated melanoma patients, but do not support an association between the induction of these T cells and clinical responses.  相似文献   

20.
Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu) using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL) in combination with a universal Pan DR epitope (PADRE) or CpG-oligodeoxynucleotides (CpG-ODNs) as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号