首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu G  Bao M 《Plant cell reports》2003,21(7):640-644
Adventitious shoots were successfully regenerated from leaf explants of in vitro cultures of Platanus acerifolia Willd. The leaves of three clones (genotypes), designated as PH1, PH2 and PC, respectively, were wounded by three to four transverse cuts through the midvein and cultured on 26 media based on Murashige and Skoog (MS) basal medium, containing different concentrations of 6-benzylaminopurine (BAP) in combination with different concentrations of indole-3-butyric acid (IBA). The highest regeneration rate (>90%) and the largest number of shoot clumps per regenerating leaf (>4 shoot clumps/explant) were obtained with leaves of genotype PH2 cultured on MS basal medium supplemented with 17.76 microM BAP and 4.92 microM IBA. The other two genotypes, PH1 and PC, showed very low capability of shoot regeneration (<10%) on all the media tested. Shoots on leaf explants originated mainly from callus that developed around the cut end of petioles and along the cuts across the midvein. The regenerated shoots were micropropagated, rooted and transplanted to the soil successfully.  相似文献   

2.
The influence of cytokinin thidiazuron (TDZ) and auxin indole-3-acetic acid (IAA) on in vitro shoot organogenesis of fifteen Rhododendron genotypes was investigated and a protocol for high frequency adventitious shoot regeneration from leaf explants was developed. High genotypic variation was observed and regeneration frequencies ranged from 0 to 100 %. Genotype Ovation had the highest number of shoots (26.4 per explant) after 12 weeks on medium with 0.57 μM IAA and 1.20 μM TDZ, but only 65 % of explants regenerated. Catawbiense Grandiflorum had 17.7 shoots per explant and 75 % regeneration on medium with 5.70 μM IAA and 0.45 μM TDZ and Van Werden Poelman had 14.3 shoots per explant and 100 % regeneration on medium with 0 57 μM IAA and 0.45 μM TDZ.  相似文献   

3.
Summary A method has been developed for the induction of adventitious shoots from leaf tissue of Echinacea pallida with subsequent whole-plant regeneration. Proliferating callus and shoot cultures were derived from leaf tissue explants placed on Murashige and Skoog medium supplemented with 6-benzylaminopurine and naphthaleneacetic acid combinations. The optimum shoot regeneration frequency (63%) and number of shoots per explant (2.3 shoots per explant) was achieved using media supplemented with 26.6 μM 6-benzylaminopurine and 0.11 μM naphthaleneacetic acid. Rooting of regenerated shoot explants was successful on Murashige and Skoog medium, both with and without the addition of indole-3-butyric acid. All plantlets survived acclimatization, producing phenotypically normal plants in the greenhouse. This study demonstrates that leaf tissue of E. pallida is competent for adventitious shoot regeneration and establishes a useful method for the micropropagation of this important medicinal plant.  相似文献   

4.
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09 μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant classes within 80 d was significantly higher than with previous reports in mungbean  相似文献   

5.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

6.
Summary Development of an efficient transformation method for recalcitrant crops such as sugar beet (Beta vulgaris L.) depends on identification of germplasm with relatively high regeneration potential. Individual plants of seven sugar beet breeding lines were screened for their ability to form adventitious shoots on leaf disk callus. Disks were excised from the first pair of true leaves of 3-wk-old seedlings or from partially expanded leaves of 8-mo.-old plants and cultured on medium with 4.4 μM 6-benzylaminopurine for 10 wk. At 5 wk of culture, friable calluses and adventitious shoots began to develop. Rates of callus and shoot formation varied between breeding lines and between individual plants of the same line. Line FC607 exhibited the highest percentage (61%) of plants that regenerated shoots on explants. Among the plants with a positive shoot regeneration response, line FC607 also had the highest mean number (8.3±1.1) of shoots per explant. Individual plants within each line exhibited a wide range of percentages of explants that regenerated shoots. A similar variation was observed in the number of shoots that regenerated per explant of an individual plant. No loss of regeneration potential was observed on selected plants maintained in the greenhouse for 3 yr. Regenerated plants exhibited normal phenotypes and regeneration abilities comparable to the respective source plants. Based on our results, it is imperative to screen a large number of individual plants within sugar beet breeding lines in order to identify the high regenerators for use in molecular breeding and improvement programs.  相似文献   

7.
Rapid adventitious shoot regeneration from leaf explants of European birch   总被引:2,自引:0,他引:2  
The goal of this research was to develop a rapid and efficient system for regenerating shoots from leaf explants of European birch, Betula pendula Roth. Single-node stem explants were established in culture, and microshoots were subcultured every 4 weeks through 12 subcultures. Leaves from glasshouse plants or subcultured shoots were excised from stems, cut into approximately 35-mm2 pieces, and placed on Woody Plant Medium (WPM) containing different combinations of naphthaleneacetic acid (NAA) (0, 3, 6 or 9 M) and benzyladenine (BA) (0, 7.5, 15 or 22.5 M) in a 4×4 factorial design. The percentage of leaf pieces forming shoots and the number of shoots regenerated per explant were recorded after 4 weeks. Only media containing BA without NAA stimulated shoot formation on leaf explants. Fifteen micromolar BA induced the most shoots to form on leaf explants compared to 30, 45 or 60 M of this cytokinin. In addition, shoot regeneration was enhanced up to four-fold between the first and eleventh subculture. Over 90% of the leaf explants regenerated shoots with an average of 18 buds formed per explant for the eleventh subculture. Almost twice as many explants formed shoots if their adaxial side was in contact with the medium rather than oriented away from it. The ability to regenerate shoots from leaves varied among plants, regardless of stock plant age. This reliable shoot regeneration system can be used for rapid shoot proliferation and potentially for genetic engineering of European birch.  相似文献   

8.
 Adventitious shoot buds were induced from leaf and stem explants of Bacopa monnieri on Murashige and Skoog medium supplemented with benzyladenine or kinetin. The source of the explants as well as different gelling agents in the medium were found to influence shoot induction and eventual shoot growth. The best response was obtained in leaf explants taken from shoot cultures grown in medium supplemented with 2 μM benzyladenine and gelled with 0.2% gelrite. A transverse section of the leaf explant incubated in this medium showed several shoot primordia emerging from the leaf surface. This system exhibited a potential for repeated harvesting of the shoots from the original leaf explant as the latter continued to expand and regenerate new shoots, upon repeated periodical subculturing onto fresh medium. However, the callusing response of the plant was very low. Qualitative TLC studies of the regenerated shoots revealed a phytochemical profile similar to that of the field grown-plants. Received: 20 March 1998 / Revision received: 1 December 1998 / Accepted: 12 December 1998  相似文献   

9.
Leaves excised from shoot cultures of Prunus avium cvs. F12/1 and Charger and genotype 1908, and from five genotypes of P. serotina and two hybrids of P. avium×P. sargentii developed shoots on Woody Plant medium (WPM) supplemented with either benzyladenine (BA) or thidiazuron (TDZ). Regeneration in both P. avium 1908 and a genotype of P. serotina was improved using TDZ rather than BA in the medium. Regeneration occurred more frequently in P. serotina if leaves were cultured on medium with WPM rather than modified Driver and Kuniyuki walnut medium. The proportions of leaves that regenerated varied between genotypes of the same species. Regenerated shoots of both P. avium and P. serotina developed into shoot cultures following transfer to the media used to produce the shoot cultures used as explant sources. Received: 10 July 1996 / Revision received: 11 November 1996 / Accepted: 6 January 1997  相似文献   

10.
Guo B  Gao M  Liu CZ 《Plant cell reports》2007,26(3):261-265
An efficient micropropagation system for Saussurea involucrata Kar. et Kir., an endangered Chinese medicinal plant, has been developed. Shoot organogenesis occurred from S. involucrata leaf explants inoculated on medium with appropriate supplements of plant growth regulators. 66.0% of shoot regeneration frequency and 5.2 shoots per leaf explant were achieved when cultured on a medium containing 10 μM 6-benzylaminopurine (BAP) and 2.5 μM 1-naphthaleneacetic acid (NAA). Shoot organogenesis was improved further when the leaf explants were pre-incubated at low temperature, and 80.6% of shoot regeneration frequency was recorded with 9.3 shoots per leaf explant at 4°C by 5-day pretreatment period. Up to 87.0% of the regenerated shoots formed complete plantlets on a medium containing 2.5 μM indole-3-acetic acid (IAA) within 28 days, and 85.2% of the regenerated plantlets survived and grew vigorously in greenhouse condition. The phytochemical profile of the micropropagated plants was similar to that of wild plants. The regeneration protocol developed in this study provides a basis for germplasm conservation and for further investigation of medicinally active constituents of the elite medicinal plant.  相似文献   

11.
Summary Tennessee coneflower [Echinacea tennesseensis (Beadle) Small] was regenerated from flower stalks, leaf sections from flowering plants, and hypocotyls and cotyledons from seedlings. Murashige and Skoog medium (MS) supplemented with naphthaleneacetic acid (NAA) at 0.54 μM and thidiazuron (TDZ) at 22.7 μM yielded the most shoots per leaf explant. NAA and 6-benzylaminopurine concentrations for optimal shoot regeneration from leaf, flower stalk, cotyledon and hypocotyl explants in MS media were 0.54 and 24.6μM, respectively. All explant types generated shoots; however, those derived from leaves and flower stalks produced the highest number of shoots per explant and highest percentage of explants with shoots. Explants cultured on media containing high levels of NAA (5.4–27 μM) formed calluses but no adventitious shoot. Leaf explants responded to a wider range of NAA concentrations than the other explant types but shoots generated from flower stalks grew the fastest. While all cytokinins tested increased the number of shoots per explant, the number of shoots in media containing TDZ was increased by nearly threefold. Regenerated shoots from all explant types cultured on MS medium supplemented with 0.25 μM indole-3-butyric acid initiated roots within 4 wk; NAA was not effective for root induction. All vernalized plantlets developed into plants that were morphologically identical to the source material.  相似文献   

12.
A simple and efficient procedure was developed for in vitro propagation of Solanum aculeatissimum Jacq. using leaf and petiole explants cultured on Murashige and Skoog (MS) medium supplemented with α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). Effects of various plant growth regulators, explant types, carbohydrates, and basal salts on induction of adventitious shoots were also studied. Leaf explants appeared to have better regeneration capacity than petiole explants in the tested media. The highest regeneration frequency (79.33 ± 3.60%) and shoot number (11.33 ± 2.21 shoots per explant) were obtained in leaf explants in MS medium containing 3% sucrose and 0.8% agar, supplemented with 0.1 mg/l NAA and 2.0 mg/l BA, whereas petiole explants were more responsive to 0.1 mg/l NAA and 1.0 mg/l thiadiazuron. Developed shoots rooted best on MS medium with 1.0 mg/l indole acetic acid (IAA), producing 18.33 ± 2.51 roots per shoot. Histological investigation showed that the shoot buds originated mainly from epidermal cells of wounded tissues, without callus formation. The regenerated plantlets were successfully acclimatized in a greenhouse, where over 90% developed into morphologically normal and fertile plants. Results of flow cytometry analysis on S. aculeatissimum indicated no variation in the ploidy levels of plants regenerated via direct shoot formation and showed almost the same phenotype as that of mother plants. This adventitious shoot regeneration method may be used for large-scale shoot propagation and genetic engineering studies of S. aculeatissimum.  相似文献   

13.
A regeneration system was developed for oriental lily (Lilium orientalis) based on both leaf and bulb scale. Adventitious shoots were regenerated from leaves of in vitro cultures on Murashige and Skoog medium containing thidiazuron (TDZ) or 6-benzylaminopurine (BA) and naphthaleneacetic acid (NAA). The highest percent regeneration from leaf explants was 74.2%, being observed on medium containing 10.8 μM TDZ and 0.54 μM NAA. The highest mean number of shoots generated was 4.4 and was obtained from bulb scale explants on medium containing 0.54 μM TDZ and 0.54 μM NAA. Adventitious shoots were successfully rooted at rates ranging from 79.2% to 100%. The rooted plantlets survived after acclimatization in the greenhouse. The effect of kanamycin concentration on adventitious shoot regeneration was also evaluated, a value of 100 mg l−1 being suggested as a lethal dose for lily transformation. Eighteen ISSR markers were employed to determine the genetic stability of the regenerated shoots in comparison to their mother plant. Eleven primers in total produced 70 clear and reproducible bands. Genetic similarity indicators among the clonal derivatives and the mother plant ranged from 0.92 to 1.0. All 15 micropropagated progenies and the mother plant could be grouped together in one major cluster with a similarity level of 92%. The somaclonal variation rate across the plantlets was estimated as 4.2%, indicating that direct shoot formation from explant regeneration is a safe method for multiplication of “true-to-type” plants.  相似文献   

14.
Ramie [Boehmeria nivea (L.) Gaud] is one of the most important perennial fiber crops in China. In vitro tissue culture of ramie could serve as an important means for its improvement through genetic transformation. To improve the regeneration capacity of ramie, the effects on plant regeneration of donor plant age, basal medium, plant growth regulators, and culture conditions were evaluated using explants derived from the cotyledon, hypocotyl, leaf, petiole, and stem of ramie seedlings. Cotyledons and hypocotyls excised from 4-d-old seedlings and leaves and petioles and stems from 15-d-old seedlings were optimal explants. The highest regeneration efficiency was obtained on Murashige and Skoog salts with Gamborg’s B5 vitamins basal medium containing 2.27 μM thidiazuron (TDZ) and 0.054 μM naphthaleneacetic acid (NAA) for the five explant types tested. A photoperiod of 16:8 h (light/dark) was found to be superior than continuous darkness for regeneration of ramie using TDZ. The regenerated shoots were transferred to hormone-free medium for shoot elongation and successfully rooted on half-strength Murashige and Skoog supplemented with 0.134 μM NAA. The rooted plantlets with four to five leaves were transplanted to greenhouse for further growth.  相似文献   

15.
An efficient and rapid plant regeneration system was established for zonal and scented geraniums using leaf discs as explants. Several explants, medium and culture conditions were studied to optimize shoot induction. Leaf discs taken from 4–5 weeks old in vitro grown plants, whatever the genotype, were more effective for shoot regeneration than those taken from greenhouse grown plants. Darkness proved to be a stimulating factor for shoot regeneration and the combination between NAA and two cytokinins gave the best results. Direct shoot regeneration (100%) was obtained from leaf discs of P. capitatum on half-strength MS medium supplemented with 0.5 mg l−1 NAA in combination with 1 mg l−1 of BAP and zeatin in darkness (11.4 shoots per explant). In the same medium and culture conditions, all P. graveolens leaf discs also exhibited direct shoot regeneration (7.3 shoots per explant). For P. x hortorum, 100% of leaf discs underwent shoot regeneration on a MS medium supplemented with 0.2 mg l−1 NAA in combination with 0.5 mg l−1 of BAP and zeatin in darkness (8.8 shoots per explant) or under low light conditions with 0.2 mg l−1 NAA and 1 mg l−1 of BAP and zeatin (7.5 shoots per explant). For this species, the best results for shoot elongation were obtained on half-strength MS medium gelled with Phytagel 0.3% (v/v). Whatever the genotype, all shoots rooted readily when transferred to diluted MS medium (MS/2) containing 1 mg l−1 IAA. Acclimatized plants grew normally and flowered in greenhouse conditions. Flow cytometry analysis made on leaves of acclimatized plants revealed that all the scented geranium plants are similar to mother plants while 71% of P. x hortorum plants which showed strong growth were tetraploid.  相似文献   

16.
Hou  Jinyan  Su  Pengfei  Wang  Dacheng  Chen  Xue  Zhao  Weiwei  Wu  Lifang 《Plant Cell, Tissue and Organ Culture》2020,142(1):143-156

Sapium sebiferum Roxb. is a widespread and economically important multipurpose tree due to its high value in ornamental, and biodiesel production as well as medicine. A highly efficient in vitro plant regeneration system through direct shoot organogenesis was established for the first time from leaves and petioles of S. sebiferum. The results showed that plant growth regulators (PGRs), mechanical damage, explant orientation, explant source, and developmental stage had a strong influence on the in vitro morphogenesis of S. sebiferum. For shoot organogenesis from leaves, the highest adventitious shoot induction rate (96.67%) with 25.67 shoots per explant was obtained when mechanically damaged leaves (the first three leaf explants at the top, leaf #1–3) were cultured with the abaxial surface placed down on Murashige and Skoog (MS) medium containing 0.5 mg L?1 thidiazuron (TDZ). For in vitro morphogenesis of petioles, the combination of 1-naphthylacetic acid (NAA) and 6-benzylainopurine (6-BA) played a key role in cell fate determination. All of the in vitro petioles produced adventitious shoots on MS medium containing 1.0 mg L?1 6-BA and 0.1 mg L?1 NAA, while they produced green calli on medium fortified with 0.5 mg L?1 6-BA and 1.0 mg L?1 NAA. The shoots were subcultured in medium fortified with 0.5 mg L?1 6-BA and 0.1 mg L?1 NAA for multiplication and elongation. The elongated shoots successfully rooted on half-strength MS (1/2 MS) medium fortified with 0.5 mg L?1 indole-butyric acid (IBA) and 0.25 mg L?1 indole-3-acetic acid (IAA), and the regenerated plantlets successfully acclimatized with a survival rate of 92.56% in the greenhouse. The genetic fidelity of in vitro regenerated plants was evaluated using inter simple sequence repeat molecular markers. The in vitro regenerated plants were found to be the true to their mother plant. This study will be beneficial for the large-scale propagation as well as the genetic improvement of S. sebiferum.

  相似文献   

17.
俄罗斯橄榄(Elaeagnus angustifolia L.)是一种具有很重要药用价值和生态意义的植物。以俄罗斯橄榄一年生幼苗的叶片和茎段为实验材料,探讨了细胞分裂素类(6-BA和Zt)和生长素类(NAA和IBA)两类激素不同组合以及不同配比对植株再生的影响,最后建立了一个高效的俄罗斯橄榄再生方法。结果表明,MS 培养基+ 0.5 mg/L 6-BA +0.2 mg/L NAA更适合叶片的再生,平均每个外植体能产生多达4.3个不定芽;而在MS培养基 + 1.0 mg/L Zt +0.5 mg/L NAA的条件下,茎段外植体再生出来的不定芽最多可以达到平均3.6个;再生芽在含有0.5 mg/L NAA的1/2 MS培养基上生根率达到100%。体外再生苗移栽到装有灭菌混合土(土∶泥炭∶沙子=1∶1∶1)的花盆中锻炼驯化,最后有77%的再生植株存活下来。此结果不仅对俄罗斯橄榄种质资源保护有重要的促进作用,另外也为其将来的遗传转化奠定了基础。  相似文献   

18.
Shoot regeneration from cultured leaves of Japanese pear (Pyrus pyrifolia)   总被引:13,自引:0,他引:13  
Several experiments were conducted to investigate in vitro regeneration of adventious shoots from cultured leaves of Japanese pear (Pyrus pyrifolia). A protocol was developed and regeneration achieved from six cultivars. Leaves harvested from shoot cultures which had been preconditioned on B5 medium with 5 μM thidiazuron plus 0.25 μM gibberellic acid were placed on regeneration medium of the same composition. Frequency of regeneration per leaf was as high as 23% but cultivar and environmental factors influenced the result. More mature (basal) leaves regenerated more frequently than younger ones from the shoot tip. Leaf orientation during regeneration and photoperiod was not a strong influence but regeneration from leaf pieces was less than from uncut leaves. An alternative regeneration procedure was developed in which first, shoot cultures were grown on the preconditioning medium. Leaves of the intact shoot cultures were then induced to regenerate directly when adventitious shoots formed on leaves of the intact shoot culture leaves without excision. Adventitious shoots from both procedures developed into typical shoot cultures when transferred to shoot culture maintenance medium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Cytokinins, donor plants and their time in vitro as well as basal media were investigated for their influence on shoot regenerative capacity of American elm (Ulmus americana L.) leaves. Leaves excised from six 2-year-old seedlings formed adventitious shoots when placed on Driver and Kuniyuki Walnut (DKW) medium supplemented with 7.5, 15 or 22.5 M of benzyladenine (BA) or thidiazuron (TDZ). Thidiazuron induced significantly higher regeneration percentages on elm leaves than BA, regardless of concentration used. Donor plant also affected the efficiency of shoot regeneration, with certain seedlings having 1.5 to 7 times more explants forming shoots as compared to other seedlings tested. By subculture 15, the average number of shoots per regenerating explant increased at least 3-fold for leaves on media with BA or TDZ for the one donor plant that survived continued subculturing. Leaf explants from donor plants with the highest regenerative capacity had a higher percentage of shoot formation on DKW than MS medium. Explants from productive donor plants should be placed on DKW medium supplemented with TDZ to improve shoot regeneration efficiency from American elm leaves.  相似文献   

20.
An efficient in vitro plant regeneration system from leaves of Ophiorrhiza japonica Blume was established for the first time. Callus formation rate was more than 90.4 % from leaf segments on Murashige and Skoog (MS) supplemented with either α-naphthaleneacetic acid (NAA) alone or in combination with 6-benzyladenine (BA). The highest shoot regeneration (78.9 %) was achieved on MS medium containing 2.0 mg dm−3 BA and 0.2 mg dm−3 NAA, with an average of 9.4 shoots developed per leaf segment. Shoot regeneration was also improved when the leaf explants were cultured in MS basal medium supplemented with 0.5 % (m/v) polyvinylpyrrolidone (PVP). The leaf explants from seedlings with age of about 18–27 d showed the highest shoot regeneration. The regenerated shoots were rooted on half-strength basal MS medium supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA), which averagely produced 24.8 roots per shoot. The plantlets were transferred to soil, where 100 % survived after 1 month of acclimatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号