首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermodynamics of anion binding to human serum transferrin   总被引:1,自引:0,他引:1  
W R Harris 《Biochemistry》1985,24(25):7412-7418
The binding of phosphate, bicarbonate, sulfate, and vanadate to human serum transferrin has been evaluated by two difference ultraviolet spectroscopic techniques. Direct titration of apotransferrin with bicarbonate, phosphate, and sulfate produces a strong negative absorbance near 245 nm, while titration with vanadate produces a positive absorbance in this region. Least-squares refinement of the absorbance data indicates that two anions of sulfate, phosphate, and vanadate bind to each transferrin molecule but that there is detectable binding of only a single bicarbonate anion. A second method used to study the thermodynamics of anion binding was competition equilibrium between anions for binding to the transferrin. The equilibrium constant for binding of the first equivalent of vanadate was determined by competition vs. phosphate and sulfate, while the equilibrium constant for binding of the second equivalent of bicarbonate was determined by competition vs. vanadate. Anion binding was described by two equilibrium constants for the successive binding of two anions per transferrin molecule: K1 = [A-Tr]/[A][Tr] and K2 = [A-Tr-A]/[A][A-Tr] where [A] represents the free anion concentration, [Tr] represents apotransferrin concentration, and [A-Tr] and [A-Tr-A] represent the concentrations of 1:1 and 2:1 anion-transferrin complexes, respectively. The results were the following: for phosphate, log K1 = 4.19 +/- 0.03 and log K2 = 3.25 +/- 0.21; for sulfate, log K1 = 3.62 +/- 0.07 and log K2 = 2.79 +/- 0.20; for vanadate, log K1 = 7.45 +/- 0.10 and log K2 = 6.6 +/- 0.30; for bicarbonate, log K1 = 2.66 +/- 0.07 and log K2 = 1.8 +/- 0.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.  相似文献   

3.
An obligatory role for barbonate (or other synergistic anions) in the specific binding of Fe3+ by transferrin has been a point of controversy for two decades. There are an equal number of confirmatory and negative reports of specific Fe3+-transferrin binary complexes. A criticism of previous studies is the use of only one synthetic route, and limited product testing. This study reports the development of several preparative routes aimed at the formation of a specific Fe3+-transferrin complex, and the characterization of the products by spectrophotometry and chemical reactivity. The preparative routes described include: (a) displacement of carbonate from Fe3+-transferrin-CO32- at low pH followed by removal of CO2 by several techniques; (b) addition of FeCl3 to apotransferrin under CO2-free conditions; (c) oxidation of Fe2+ in the presence of apotransferrin under CO2-free conditions; (d) reaction of apotransferrin with nonsubstituting Fe3+ complexes in the absence of CO2; and (e) attempts to displace anions from weak Fe3+-transferrin-anion complexes. The product were examined with regard to their visible spectra, and their examined with regard to their visible spectra, and their reactivity with: (a) NaHCO3, (b) Fe3+-nitrilotriacetic acid in NaHCO3, and (c) citrate. The results are compared with the characteristics of Fe3+-transferrin-anion complexes and nonspecific Fe3+, transferrin mixtures. The data indicate that in the absence of synergistic anions the affinity of the specific metal binding sites of transfe-rin for Fe3+ is so low as to not compete favorably with hydrolytic polymerization and nonspecific binding effects.  相似文献   

4.
The binding of divers detergent anions to bovine serum albumin   总被引:17,自引:0,他引:17  
  相似文献   

5.
Steric restrictions on the binding of large metal ions to serum transferrin   总被引:5,自引:0,他引:5  
Apotransferrin in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid at 25 degrees C and pH 7.4 was titrated with acidic solutions of Lu3+, Tb3+, and Eu3+. Metal binding at the two specific metal-binding sites of transferrin was followed from changes in the difference UV spectra at 245 nm. The binding of Tb3+ was also followed from changes in the fluorescence emission spectrum at 549 nm. Apotransferrin was titrated with solutions containing varying ratios of the metal ion and the competitive chelating agent nitrilotriacetic acid, and metal-transferrin binding constants were calculated by nonlinear least-squares fits of the absorbance as a function of titrant added. The sequential carbonate-independent equilibrium constants for the binding of two metal ions are log KM1 = 11.08 and log KM2 = 7.93 for Lu3+, log KM1 = 11.20 and log KM2 = 7.61 for Tb3+, and log KM1 = 9.66 and log KM2 = 7.27 for Eu3+. Titrations of both C-terminal and N-terminal monoferric transferrins indicate that all of these metal ions bind more strongly to the C-terminal binding site. The trend in log K values as a function of the lanthanide ionic radius has been evaluated both by plots of log K versus the metal ion charge/radius ratio and by linear free-energy relationships in which binding constants for complexes of the larger lanthanides are plotted versus the binding constants for complexes with the smallest lanthanide, Lu3+. Both methods indicate that there is a sharp drop in the binding constants for the C-terminal binding site for metals larger than Tb3+. This decrease is attributed to a steric hindrance to the binding of the larger cations. The steric effect is not as strong for metal binding at the N-terminal site. As a result, the selectivity for binding to the C-terminal site, which is quite high for the smaller lanthanides, drops sharply on going from Tb3+ to Nd3+.  相似文献   

6.
The interaction of various anions with human serum transferrin was investigated due to the concomitant binding of iron and a synergistic anion to form the transferrin-anion-iron complex. Two tetrahedral oxyanion oxidizing agents, periodate and permanganate, were found to partially inactivate transferrin when used at equimolar ratios of oxidizing agent to protein active sites. Hypochlorite, a strong oxidizing agent with little structural similarity to periodate and permanganate, had little effect on iron-binding activity when used at similar low molar ratios of reagent to transferrin active sites. Transferrin treated with a 3:1 molar ratio of periodate or permanganate to active sites lost 74 or 67% of its iron-binding capacity, respectively. The composition of the buffer affected the extent of transferrin inactivation by periodate and permanganate; for example, the extent of inactivation by periodate was threefold greater in a borate buffer than in a phosphate buffer. Comparative oxidations in buffer systems suggest the following order of affinity of three buffer anions for the apotransferrin metal-binding center: phosphate greater than bicarbonate greater than borate. The interaction of phosphate ions with the iron-transferrin complex was also examined due to the increased susceptibility to periodate inactivation of iron-saturated transferrin in phosphate buffer (M. H. Penner, R. B. Yamasaki, D. T. Osuga, D. R. Babin, C. F. Meares, and R. E. Feeney (1983) Arch. Biochem. Biophys. 225, 740-747). The apparent destabilization of the iron-transferrin complex in phosphate buffer was found to be due to the competitive removal of iron by phosphate from the iron-protein complex. We found that phenylglyoxal-modified Fe-transferrin, with no loss of bound iron, was much more resistant to iron removal by phosphate and other competitive chelators.  相似文献   

7.
Serum transferrin is the protein that transports ferric ion through the bloodstream and is thus a potential target for iron chelation therapy. However, the release of iron from transferrin to low-molecular-weight chelating agents is usually quite slow. Thus a better understanding of the mechanism for iron release is important to assist in the design of more effective agents for iron removal. This paper describes the effect of sulfonate anions on the rates of iron removal from C-terminal monoferric transferrin by acetohydroxamic acid, deferiprone, nitrilotriacetic acid (NTA), and diethylenetriaminepentaacetic acid at 25 °C in 0.1 M N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (Hepes) buffer at pH 7.4. These ligands remove iron via a combination of pathways that show saturation and first order dependence on the ligand concentration. The kinetic effects of the anions methanesulfonate, methylenedisulfonate, and ethylenedisulfonate were evaluated. All these anions increase the overall rates of iron release, presumably by binding to an allosteric anion binding site on the protein. The two disulfonates produce a larger acceleration in iron release than the monosulfonate. More detailed studies using methylenedisulfonate show that this anion accelerates the rate of iron release via the saturation pathway. The addition of methylenedisulfonate results in the appearance of a large saturation pathway for iron release by NTA, which otherwise removes iron by a simple first-order process. The sulfonate group was selected for these studies because it represents an anionic functional group that can be covalently linked to a therapeutic ligand to accelerate iron release in vivo. The current studies indicate that the binding of the sulfonates to the allosteric site on the protein is quite weak, so that one would not expect a significant acceleration in iron release at clinically relevant ligand concentrations.  相似文献   

8.
The binding of cadmium(II) to human serum transferrin in 0.01 M N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid with 5 mM bicarbonate at 25 degrees C has been evaluated by difference ultraviolet spectroscopy. Equilibrium constants were determined by competition versus three different low molecular weight chelating agents: nitrilotriacetic acid, ethylenediamine-N,N'-diacetic acid, and triethylenetetramine. Conditional equilibrium constants for the sequential binding of two cadmium ions to transferrin under the stated experimental conditions are log K1 = 5.95 +/- 0.10 and log K2 = 4.86 +/- 0.13. A linear free energy relationship for the complexation of cadmium and zinc has been prepared by using equilibrium data on 243 complexes of these metal ions with low molecular weight ligands. The transferrin binding constants for cadmium and zinc are in good agreement with this linear free energy relationship. This indicates that the larger size of the cadmium(II) ion does not significantly hinder its binding to the protein.  相似文献   

9.
J C Cannon  N D Chasteen 《Biochemistry》1975,14(21):4573-4577
Vanadyl ion, VO(IV), has been used as an electron paramagnetic resonance (EPR) spin label to study the metal-binding properties of human serum transferrin in the presence of bicarbonate. Iron-saturated transferrin does not bind the vanadyl ion. Room temperature titrations of apotransferrin with VO(IV) as monitored by EPR indicate the extent of binding to be pH dependent, with a full 0.2 VO(IV) ions per transferrin molecule bound at pH 7.5 and 9, but only about 1.2 VO(IV) ions bound at pH 6. The EPR spectra of frozen solutions with or without 0.1 M NaCUO4 at 77 K show that there are two spectroscopically nonequivalent binding sites (A and B) with a slight difference in binding constants. One site (A site) exhibits essentially constant binding capacity in the pH range 6-9, but the other (B site) becomes less avialable as the pH is reduced below 7. Results with mixed Fe(III)-VO(IV) transferrin complexes suggest that iron shows a slight tendency to bind at the B site over the A site pH 7.5 and 9.0. Only the B site in both vanadyl and iron transferrins is perturbed by the presence of perchlorate.  相似文献   

10.
The human transferrin receptor (TfR) and its ligand, the serum iron carrier transferrin, serve as a model system for endocytic receptors. Although the complete structure of the receptor's ectodomain and a partial structure of the ligand have been published, conflicting results still exist about the magnitude of equilibrium binding constants, possibly due to different labeling techniques. In the present study, we determined the equilibrium binding constant of purified human TfR and transferrin. The results were compared to those obtained with either iodinated TfR or transferrin. Using an enzyme-linked assay for receptor-ligand interactions based on the published direct calibration ELISA technique, we determined an equilibrium constant of Kd=0.22 nM for the binding of unmodified human Tf to surface-immobilized human TfR. In a reciprocal experiment using soluble receptor and surface-bound transferrin, a similar constant of Kd=0.23 nM was measured. In contrast, covalent labeling of either TfR or transferrin with 125I reduced the affinity 3-5-fold to Kd=0.66 nM and Kd=1.01 nM, respectively. The decrease in affinity upon iodination of transferrin is contrasted by an only 1.9-fold decrease in the association rate constant, suggesting that the iodination affects rather the dissociation than the association kinetics. These results indicate that precautions should be taken when interpreting equilibrium and rate constants determined with covalently labeled components.  相似文献   

11.
Human serum apotransferrin (hTF) binds to Zr(IV) slowly in the presence of nitrilotriacetate (NTA), citrate or ethylenediaminetetraacetate (EDTA) as donor ligands. For Zr(NTA)(2)(2-) as donor, equilibrium was reached in ca. 2 h (pH 7.4, 298 K, 10 mM Hepes, 5 mM bicarbonate) and full loading of the N- and C-lobe sites was achievable to give Zr(2)-hTF. (13)C NMR data suggest that carbonate can bind as a synergistic anion. (1)H and 2D [(1)H,(13)C] (using epsilon-[(13)C]Met-hTF) NMR studies show that there is little lobe-selectively in the order of Zr(IV) uptake. Fe(III) displaced Zr(IV) from the C-lobe of Zr(2)-hTF first, followed by the N-lobe. However, in the presence of a large excess of NTA, Zr(IV) binds to the N-lobe of holo-hTF (Fe(2)-hTF) first followed by the C-lobe. The (1)H and (13)C NMR chemical shift changes for epsilon-[(13)CH(3)] of Met464, which is close to the C-lobe site, are quite distinct from those observed previously for Al(III), Fe(III), Ti(IV), Ga(III) and Bi(III) binding to hTF, suggesting that Zr(IV) binding may not induce lobe closure [as observed previously for Hf(IV)]. This may affect receptor recognition and play a role in the different biological behaviour of Zr(IV) compared to Ti(IV).  相似文献   

12.
Binding of aluminum to human serum albumin and transferrin was investigated using a competitive binding assay incorporating a cation exchange resin, chelex. Both albumin and transferrin were found to produce linear Scatchard plots of aluminum binding data over the aluminum and protein concentration ranges found in humans. Binding constants measured for albumin and transferrin were 1.96 and 0.515 microM, respectively.  相似文献   

13.
14.
Serum transferrin (Tf) is an iron binding glycoprotein that plays a central role in the metabolism of this essential metal but it also binds other metal ions. Four main transferrin forms containing different iron binding states can be distinguished in human serum samples: monoferric (C-site or N-site), holotransferrin (with two Fe atoms) and apotransferrin (with no metal). Recently, it has been reported that Tf binds also Ti even more tightly than does Fe, in artificially Ti(iv) spiked solutions. However, very limited work has been done on the Ti binding to Tf at physiological concentrations in patients carrying intramedullary Ti nails. Here we report the chemical association of Ti to Tf "in vivo" under different chromatographic conditions by elemental mass spectrometry using double focusing inductively coupled plasma (DF-ICP-MS) as detector. For the separation of the Ti/Fe-Tf forms different gradient conditions have been explored. The observed results reveal that human serum Ti (from patients carrying intramedullary Ti nails) is uniquely associated to the N-lobe of Tf. The investigation of the influence of sialic acid in the carbohydrate chain of human serum Tf, studied by incubating the protein with neuraminidase (sialidase) to obtain the monosialilated species, revealed that the binding affinity of Ti was similar for monosialo-Tf and for native-Tf and occurs in the N-lobe. These results suggest that the species Fe(C)Ti(N)-TF might provide a route for Ti entry into cells via the transferrin receptors after the release of the metal from its implants.  相似文献   

15.
16.
Bicarbonate and the binding of iron to transferrin   总被引:8,自引:0,他引:8  
  相似文献   

17.
18.
O Zak  P Aisen 《Biochemistry》1988,27(3):1075-1080
A wide variety of thermodynamic, kinetic, and spectroscopic studies have demonstrated differences between the two metal-binding sites of transferrin. In the present investigation, we have further assessed these differences with respect to the binding of gadolinium, evaluated by UV difference spectrophotometry, electron paramagnetic resonance (EPR) titration, EPR difference spectroscopy in conjunction with urea gel electrophoresis, and equilibrium dialysis. Combinations of these studies establish that only one site of the protein binds Gd(III) sufficiently firmly to be characterized. In order to reveal which of the two sites accepts Gd(III), we made use of monoferric transferrins preferentially loaded with Fe(III) at either site in EPR spectroscopic studies. Because of the overlap of signals, difference spectroscopy was required to distinguish resonances arising from Fe(III) and Gd(III) specifically complexed to the protein. When iron is bound to the C-terminal site, leaving the N-terminal site free for binding of gadolinium, the difference spectrum shows no evidence of specific binding. However, when iron is bound to the N-terminal site, the difference spectrum shows a resonance line at g' = 4.1 indicative of specific binding, thus implicating the C-terminal site in the binding of Gd(III). The effective stability constant for the binding of Gd(III) to this site of transferrin at pH 7.4 and ambient pCO2 is 6.8 X 10(6) M-1. At physiological pCO2, the formation of nonbinding carbonato complexes of Gd(III) precludes a substantial role for transferrin in the transport of the lanthanide in vivo.  相似文献   

19.
The distribution of 233Pa in rat serum at periods between 5 and 50 min after i.v. injection of a solution of protactinium chloride was studied by gel chromatography.Sequential analysis of sera on Sephacryl S-300 and DEAE-Sephadex showed that 233Pa was associated only with the transferrin fraction of the serum proteins. This finding was confirmed by iso-electric focusing electrophoresis. In the cytosol fractions prepared from the liver and kidneys of the 233Pa injected rats the nuclide was also shown to be protein bound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号