首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacylase I from porcine kidney (EC 3.5.1.14) contains seven cysteine residues per subunit. Three sulfhydryl groups are accessible to modification by 4-hydroxymercuribenzoate (p-MB). The kinetics of the reaction suggest that only one of these groups affects acylase activity when modified by p-MB. Its reaction rate increases 2-3-fold when the essential metal ion of aminoacylase is removed. Modification of metal-free apoenzyme by N-ethylmaleimide (NEM) abolishes its activity without impairing Zn2+ binding. This indicates that the sulfhydryl group reacting with NEM is not directly coordinated to the metal. DTNB (5,5'-Dithio-bis(2-nitrobenzoate), Ellman's reagent) also modifies three sulfhydryl groups per subunit. In this case, the reactivities of native aminoacylase and apoenzyme are not significantly different. N-Hydroxy-2-aminobutyrate, a strong aminoacylase inhibitor, substantially increases the reactivity of the slowest reacting sulfhydryl in both native enzyme and metal-free aminoacylase. It appears that binding of the inhibitor or removal of the metal ion induces conformational changes of the amino-acylase active site that render a buried sulfhydryl group more accessible to modification.  相似文献   

2.
Raman spectra have been measured for intact rat lens nuclei at various stages of aging in an attempt to gain further insight into age-related structural changes in the lens proteins, especially changes concerning protein sulfhydryl groups. Two Raman bands at 2579 and 2561 cm-1 were observed to be assignable to SH stretching modes of the cysteine residues. These bands have been attributed to "exposed" and "buried" sulfhydryl groups of the lens proteins, respectively, on the basis of a model compound study. The relative intensities of both SH stretching modes decreased with lens aging, and concurrently the intensity of a S-S stretching mode at 509 cm-1 due to disulfide bridges increased, suggesting that not only exposed but also buried protein sulfhydryl groups are converted to disulfide groups as a result of aging. The rate of the intensity decrease in the 2561 cm-1 band was similar to that in the 2579 cm-1 band. Therefore, it seems likely that the sulfhydryl groups in the two distinct environments are nearly equally subjected to the oxidation. Cysteine and cystine residues of the lens proteins gave their C-S stretching modes at 708 cm-1, indicating that they predominantly assume PC and/or PN conformers. The intensity ratio of a tyrosine doublet near 840 cm-1 (I832/I855) changed from approximately 0.86 to approximately 0.81 with the aging of the rat lens. This result implies that some tyrosine residues undergo a change in their hydrogen bonding environments during the course of aging. Of particular importance is that the relative intensity change of the tyrosine doublet with normal aging and that with cataract formation are in opposite directions.  相似文献   

3.
The formation of collagen IV dimers in the extracellular space requires the association of two C-terminal globular domains giving rise to a large hexameric structure NC1 (Mr = 170,000). NC1 hexamer was purified from collagenase digests of a mouse tumor and several human tissues. It was shown by electrophoresis to consist of two kinds of cross-linked, dimeric segments, Da and Db (Mr about 50,000), and monomeric segments in a molar ratio of about 3:1. In the native hexamers free SH groups were detectable by N-[14C]ethylmaleimide and other sulfhydryl reagents. They account for 4-11% of the total number of cysteine residues with some variations between preparations from different sources and in the distribution between monomers and dimers. Reduction with 10 mM dithioerythritol under non-denaturing condition completely converted dimers into monomers and allowed the alkylation of all twelve cysteine residues present in each monomeric NC1 segment. A monomeric intermediate with four to six free SH groups and a higher electrophoretic mobility than the final product was observed. Generation of this intermediate from dimers Da and Db follows apparently different routes proceeding either directly or through a dimeric intermediate respectively. The time course of conversion is best described by a mechanism consisting of two (Db) or three (Da) consecutive steps with pseudo-first-order rate constants ranging from 0.14 ms-1 to 0.5 ms-1. Glutathione-catalyzed reoxidation of completely reduced NC1 in the presence of 2 M urea results in a product indistinguishable from native material by ultracentrifugation and electrophoresis pattern. The data suggest that in situ formation of NC1 structures is catalyzed by a small fraction (5-10%) of intrinsic SH groups leading to the formation and stabilization of dimers by rearrangement of disulfide bonds.  相似文献   

4.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

5.
The conformation of the structured EF interhelical loop of bacteriorhodopsin and its change in the M photointermediate were assessed by measuring the rate of reaction of 16 single engineered cysteine residues along the loop with water-soluble sulfhydryl reagents. The exposure to the bulk in the unilluminated state determined with the cysteine reaction correlated well with the degree of access to water calculated from the crystallographic structure of the loop. The EF-loop should be affected by the well-known outward tilt of helix F in the M and N intermediates of the photocycle. A second mutation in each cysteine mutant, the D96N residue replacement, allowed full conversion to the M state by illumination. The reaction rates measured under these conditions indicated that buried residues tend to become more exposed, and exposed residues become more buried in M. This is to be expected from tilt of helix F. However, the observation of increased exposure of four residues near the middle of the loop, where steric effects are only from other loop residues, indicate that the conformation of the EF-loop itself is changed. Thus, the motion of the loop in M is more complex than expected from simple tilt of helix F, and may include rotation that unwinds its twist.  相似文献   

6.
1. The mechanism of proteolysis of ornithine transaminase apoenzyme II by group-specific protease and the relation between the confirmations of ornithine transaminase and its susceptibility to group-specific protease were studied to elucidate the mode of action of the protease. 2. Differences in the conformations of ornithine transaminase apoenzyme II, molecular weight 67000, and ornithine transaminase holoenzyme, molecular weight 140000, were shown by studies on difference spectra produced by various concentrations of ethylene glycol. Increase of the titratable sulfhydryl groups on resolution of the coenzyme from ornithine transaminase also supports this finding. These results are consistent with the facts that the apoenzyme was sensitive to group-specific protease, while the holoenzyme was not. 3. Kinetics studies showed that ornithine transaminase apoenzyme II was degraded by limited proteolysis. Reaction of the native enzyme with group-specific protease resulted in a nick in the enzyme molecule with formation of one homogeneous large product and small peptides. The large product was not degraded further. The large product was indistinguishable from native ornithine transaminase apoenzyme II in various properties including its elution volume on gel filtration, its mobility on disc electrophoresis, its antigenicity, its estimated number of exposed tryptophan residues, and its titratable number of sulfhydryl groups. But unlike the apoenzyme the product did not show tetramerization with coenzyme or catalytic activity, although it retained the ability to bind with coenzyme and had the same number of bound pyridoxal phosphate as the native ornithine transaminase molecule. Thus, native ornithine transaminase apoenzyme II was degraded by limited proteolysis. Unfolded enzyme, denatured by 8 M urea, was degraded extensively. 4. The initial step of intracellular proteins degradation is discussed on the basis of these results.  相似文献   

7.
An enzymatic-HPLC procedure for the determination of plasma pyridoxal 5'-phosphate (PLP) has been established. The assay is based on the decarboxylation of L-3,4-dihydroxyphenylalanine using Streptococcus tyrosine decarboxylase apoenzyme, which requires PLP as cofactor. The product of the enzyme reaction, dopamine, is measured by Coulochem electrochemical detection with a series of oxidizing and then reducing electrodes. Trace amounts of PLP in the apoenzyme preparation were removed with the aid of cysteine-sulfinic acid and gel filtration. The detection limit for PLP by this method is 50 pM in plasma.  相似文献   

8.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

9.
The position of the two exposed and of one fully buried cysteine residues in the polypeptide chain of aspartate aminotransferase was established. The exposed residues are Cys-45 and Cys-82, the buried one is Cys-252. The functionally important, semiburied cysteine residue of the enzyme was previously found to be Cys-390. Available evidence indicates that the remaining fully buried cysteine residue — the one most difficultly accessible for modification — is Cys-191. Thus, the positions of all five cysteine residues of the aminotransferase molecule are identified.  相似文献   

10.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

11.
M Liu  Y Huang  J Wu  E Wang  Y Wang 《Biochemistry》1999,38(34):11006-11011
Arginyl-tRNA synthetase (ArgRS) from Escherichia coli (E. coli) contains four cysteine residues. In this study, the role of cysteine residues in the enzyme has been investigated by chemical modification and site-directed mutagenesis. Titration of sulfhydryl groups in ArgRS by 5, 5'-dithiobis(2-nitro benzoic acid) (DTNB) suggested that a disulfide bond was not formed in the enzyme and that, in the native condition, two DTNB-sensitive cysteine residues were located on the surface of ArgRS, while the other two were buried inside. Chemical modification of the native enzyme by iodoacetamide (IAA) affected only one DTNB-sensitive cysteine residue and resulted in 50% loss of enzyme activity, while modification by N-ethylmeimide (NEM) affected two DTNB-sensitive residues and caused a complete loss of activity. These results, when combined with substrate protection experiments, suggested that at least the two cysteine residues located on the surface of the molecule were directly involved in substrates binding and catalysis. However, changing Cys to Ala only resulted in slight loss of enzymatic activity and substrate binding, suggesting that these four cysteine residues in E. coli ArgRS were not essential to the enzymatic activity. Moreover, modifications of the mutant enzymes indicated that the two DTNB- and NEM-sensitive residues were Cys(320) and Cys(537) and the IAA-sensitive was Cys(320). Our study suggested that inactivation of E. coli ArgRS by sulfhydryl reagents is a result of steric hindrance in the enzyme.  相似文献   

12.
alpha1,6-Fucosyltransferase (alpha6FucT) of human platelets was subjected to the action of phenylglyoxal (PLG), pyridoxal-5'-phosphate/NaBH(4) (PLP), and diethyl pyrocarbonate (DEPC) the reagents that selectively modify the structure of amino acids arginine, lysine and histidine, respectively, as well as to N-ethylmaleimide (NEM), mersalyl, p-chloromercuribenzoate (pCMB), iodoacetate, iodoacetamide, and methyl iodide that react with sulfhydryl group of cysteine. In addition, we treated the enzyme with beta-mercaptoethanol, a reagent that disrupts disulfide bonds. All reagents except NEM significantly inactivated alpha6FucT. Protection against the action of PLG, PLP and sulfhydryl modifying reagents was offered by GDP-fucose, GDP, and the acceptor substrate, a transferrin-derived biantennary glycopeptide with terminal GlcNAc residues. Neither donor nor acceptor substrate offered, however, any protection against inactivation by DEPC or beta-mercaptoethanol. We conclude that arginine, cysteine and probably lysine residues are present in, or closely by, the donor and acceptor substrate binding domains of the enzyme, whereas histidine may be a part of its catalytic domain. However, the primary structure of alpha6FucT does not show cysteine residues in proximity to the postulated GDP-fucose-binding site and acceptor substrate binding site of the enzyme that contains two neighboring arginine residues and one lysine residue (Glycobiol. 10 (2000) 503). To rationalize our results we postulate that platelet alpha6FucT is folded through disulfide bonds that bring together donor/acceptor-binding- and cysteine- and lysine-rich, presumably acceptor substrate binding sites, thus creating a catalytic center of the enzyme.  相似文献   

13.
The crystal structure of the P-protein of the glycine cleavage system from Thermus thermophilus HB8 has been determined. This is the first reported crystal structure of a P-protein, and it reveals that P-proteins do not involve the alpha(2)-type active dimer universally observed in the evolutionarily related pyridoxal 5'-phosphate (PLP)-dependent enzymes. Instead, novel alphabeta-type dimers associate to form an alpha(2)beta(2) tetramer, where the alpha- and beta-subunits are structurally similar and appear to have arisen by gene duplication and subsequent divergence with a loss of one active site. The binding of PLP to the apoenzyme induces large open-closed conformational changes, with residues moving up to 13.5 A. The structure of the complex formed by the holoenzyme bound to an inhibitor, (aminooxy)acetate, suggests residues that may be responsible for substrate recognition. The molecular surface around the lipoamide-binding channel shows conservation of positively charged residues, which are possibly involved in complex formation with the H-protein. These results provide insights into the molecular basis of nonketotic hyperglycinemia.  相似文献   

14.
Aspartate aminotransferase from pig heart cytosol consists of 2 identical protomers. Car?ymethylation of the easily accessible cysteines 45 and 82 of the holoenzyme produces a modified protein which however is still fully active. If the apoenzyme obtained from the car?ymethylated holoenzyme is subjected to the thiol specific reagent DTNB, another group per protomer can be titrated. There is some evidence that the group modified is the thiol 390 which is titrated in “syncatalytic” conditions, i.e. 2 mM ketoglutarate and 70 mM glutamate. The full reactivation of the car?ymethylated apoenzyme is obtained on binding of one PLP at each active site of the dimer. During the reactivation the number of thiols 390 accessible to DTNB decreases from 2 to 0 when PLP is added. The variation of the number of reactive thiol residues is not linear with coenzyme binding. Apo-holoenzyme car?ymethylated hybrid does not react with DTNB. Thus, a strong interaction between the 2 protomers is demonstrated.  相似文献   

15.
The 20 cysteine residues of tubulin are heterogeneously distributed throughout its three-dimensional structure. In the present work, we have used the reactivity of these cysteine residues with 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) as a probe to detect the global conformational changes of tubulin under different experimental conditions. The 20 sulfhydryl groups can be classified into two categories: fast and slow reacting. Colchicine binding causes a dramatic decrease in the reactivity of the cysteine residues and causes complete protection of 1.4 cysteine residues. Similarly, other colchicine analogs that bind reversibly initially decrease the rate of reaction; but unlike colchicine they do not cause complete protection of any sulfhydryl groups. Interestingly, in all cases we find that all the slow reacting sulfhydryl groups are affected to the same extent, that is, have a single rate constant. Glycerol has a major inhibitory effect on all these slow reacting sulfhydryls, suggesting that the reaction of slow reacting cysteines takes place from an open state at equilibrium with the native. Ageing of tubulin at 37 degrees C leads to loss of self-assembly and colchicine binding activity. Using DTNB kinetics, we have shown that ageing leads to complete protection of some of the sulfhydryl groups and increased reaction rate for other slow reacting sulfhydryl groups. Ageing at 37 degrees C also causes aggregation of tubulin as indicated by HPLC analysis. The protection of some sulfhydryl groups may be a consequence of aggregation, whereas the increased rate of reaction of other slow reacting sulfhydryls may be a result of changes in global dynamics. CD spectra and acrylamide quenching support such a notion. Binding of 8-anilino-1-naphthalenesulfonate (ANS) and bis-ANS by tubulin cause complete protection of some cysteine residues as indicated by the DTNB reaction, but has little effect on the other slow reacting cysteines, suggesting local effects.  相似文献   

16.
The three cysteine residues per subunit of pig muscle phosphoglucose isomerase show different reactivities toward various sulfhydryl reagents. The organomercurial, p-mercuribenzoate, can titrate two of the sulfhydryl groups under nondenaturing conditions. 2,2'-Dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, methyl 2-pyridyl disulfide, and 2-(2'-pyridylmercapto)mercuri-4-nitrophenol all label only one sulfhydryl group under the same conditions, whereas iodoacetic acid does not react with any of the sulfhydryl groups except when the enzyme is fully denatured. It is concluded, therefore, that charge, rather than steric restraint, is the determining factor for the differences seen in the modification patterns of the enzyme by these reagents. When enzyme was first labeled with 2,2'-dithiodipyridine and subsequently with p-mercuribenzoate, it was found that the latter, in a secondary process, will stoichiometrically react with the anion released by the former after the initial reaction with cysteine. The differences in reactivity of the cysteine residues toward the referred-to reagents have been exploited to specifically modify each of the three individual cysteine residues of pig muscle phosphoglucose isomerase.  相似文献   

17.
Cysteine residues 110 and 187 are essential for the formation of the correct bovine rhodopsin structure (Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463). We now show that the sulfhydryl groups of these 2 cysteine residues interact to form a disulfide bond. Rhodopsin mutants containing cysteine----serine substitutions were prepared as follows. In one mutant, CysVII, all the 10 cysteine residues of rhodopsin were replaced by serines. A second mutant, CysVIII, contained only C110 and C185; a third mutant, CysIX, contained only C185 and C187 while the fourth mutant, CysX, contained only C110 and C187. Only mutant CysX formed functional rhodopsin. Mutants CysVIII and CysIX reacted with [3H]iodoacetic acid showing the presence of free sulfhydryl groups while mutant CysX was inert to this reagent. CysX reacted with cyanide ion to form a thiocyanate derivative showing the presence of a disulfide bond. The C110-C187 disulfide bond is buried in rhodopsin because reactions with disulfide reducing agents and cyanide ion require prior treatment with denaturants.  相似文献   

18.
The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5′-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH2CH2NH3 +) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine abolishes nearly all of the observed inhibition by PLP. This work was supported by National Institutes of Health Grant GM-054642 to R.S.K.  相似文献   

19.
C Narasimhan  C S Lai  A Haas  J McCarthy 《Biochemistry》1988,27(14):4970-4973
The accessibility in human plasma fibronectin of the two free sulfhydryl groups per chain to sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and a maleimide derivative has been examined. For soluble fibronectin, the free sulfhydryl groups are not accessible to DTNB unless urea or guanidine hydrochloride is added [Smith et al. (1982) J. Biol. Chem. 257, 5831-5838]. Upon binding to polystyrene beads, 0.87 +/- 0.05 sulfhydryl group per chain becomes titratable to DTNB. Experiments using fibronectin fragments demonstrate that this newly exposed sulfhydryl group is located in a Type III homologous unit between the DNA-binding and the cell-binding domains. The results suggest that, upon adsorption to solid substrates, plasma fibronectin undergoes a conformational change, thereby exposing one buried sulfhydryl group. These findings have implications regarding the "surface activation" of adhesion activities of fibronectin.  相似文献   

20.
S-Nitrosocompounds are formed when aqueous solutions of cysteine or glutathione are exposed to ultrasound (880 kHz) in air. The yield of the S-nitrosocompounds was as high as 10% for glutathione and 4% for cysteine of the initial thiol concentrations (from 0.1 to 10 mM) in the aqueous solutions. In addition to the formation of S-nitrosocompounds, thiol oxidation to disulfide forms was observed. After the oxidation of over 70% of the sulfhydryl groups, formation of peroxide compounds as well as cysteic acid derivatives was recorded. The formation of the peroxide compounds and peroxide radicals in the ultrasound field reduced the yield of S-nitrosocompounds. S-Nitrosocompounds were not formed when exposing low-molecular-weight thiols to ultrasound in atmospheres of N2 or CO. In neutral solutions, ultrasound-exposed cysteine or glutathione released NO due to spontaneous degradation of the S-nitrosocompounds. N2O3, produced due to the spontaneous degradation of the S-nitrosocompounds in air, nitrosylated sulfhydryl groups of glutathione manifested in the appearance of new absorption bands at 330 and 540 nm. The nitrogen compounds formed in an ultrasound field modified the sulfhydryl groups of apohemoglobin and serum albumin. The main target for ultrasound-generated oxygen free radicals were cystine residues oxidized to cysteic acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号